Volume 38, Issue 2

CONTENT
ORIGINAL ARTICLES

A Short Review of Isoindigo Acceptor for Conjugated Polymeric Photovoltaics
Shu Er Tan, Wahidah Zabidi and Mohd Sani Sarjadi*

Characterization of Different Metal Oxide Promoted Alumina Catalyst
- S. M . Anisuzzaman, Awang Bono, Duduku Krishnaiah, F .A . Lahin, and C. Ramlan

Complex Intuitionistic Fuzzy Subrings
Mikhled, Okleh Alsarahead, Abd Ghafur, and Ahmad

On the General Solution of 2th Order Linear Differential Equation
J. López-Bonilla,G. Posadas-Durán, and O. Salas-Torres.

On the Roots of the Legendre Laguerre, and Hermite Polynomials
S. Álvarez-Ballesteros, J. López-Bonilla, R. López-Vázquez

Relationship between Water Quality & Black Flies (Diptera: Simuliidae) Abundance in Tambunan District, Sabah.
Nur Ashiqin Abdul Hamid, Maria Lourdes T. Lardizabal, Hiroyuki Takaoka, Estherpeni Stephen and Maznah Mahali

Download Full Volume Here (Right-Click and Save As..)

A SHORT REVIEW OF ISOINDIGO ACCEPTOR FOR CONJUGATED POLYMERIC PHOTOVOLTAICS

Shu Er Tan, Wahidah Zabidi and Mohd Sani Sarjadi*
Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
*Corresponding author: msani@ums.edu.my

ABSTRACT. This paper focussed on the recent development of conjugated polymers that contains isoindigo as acceptor moiety in the application of copolymeric solar cell. In the past decade, various modifications have been done either on the isoindigo acceptor itself or incorporated the isoindigo with different donor moieties. Recently, the power conversion efficiency (PCE) of this isoindigo-based polymeric photovoltaics have achieved up to ~7%. Hence, it is a promising acceptor for the photovoltaics and is expected to break through the recent PCE achievement in the future. This review briefly summarized the structures and properties of the isoindigo-based polymers that have been investigated by the past researches.

KEYWORD. Isoindigo; Conjugated copolymers; Polymeric solar cells; Small molecules.

 

REFERENCES:

  • Ashraf, R. S., Kronemeijer, A. J., James, D. I., Sirringhaus, H., & McCulloch, I. (2012). A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chemical Communications, 48(33), 3939. https://doi.org/10.1039/c2cc30169e
  • Braga, A. F. B., Moreira, S. P., Zampieri, P. R., Bacchin, J. M. G., & Mei, P. R. (2008). New processes for the production of solar-grade polycrystalline silicon: A review. Solar Energy Materials and Solar Cells, 92(4), 418–424. https://doi.org/10.1016/j.solmat.2007.10.003
  • Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P.L., & Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature. https://doi.org/10.1038/347539a0
  • Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p-n junction photocell for converting solar radiation into electrical power [3]. Journal of Applied Physics25(5), 676–677. https://doi.org/10.1063/1.1721711
  • Cheng, X., Wan, Q., Wu, Y., Guo, B., Guo, X., Li, Y., Zhang, M., Cui, C., & Li, Y. (2016). Toward high open-circuit voltage by smart chain engineering in 2D-conjugated polymer for polymer solar cells. Solar Energy Materials and Solar Cells. https://doi.org/10.1016/j.solmat.2016.01.017
  • Cheng, Y., Yang, S., & Hsu, C. (2009). Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews, 109(11), 5868–5923. https://doi.org/10.1021/cr900182s
  • D ’aprano, G., Leclerc, M., & Zotti, G. (1992). Stabilization and Characterization of Pernigraniline Salt: The ” Acid-Doped ” Form of Fully Oxidized Polyanilines. Macromolecules. https://doi.org/10.1021/ma00034a013
  • Darling, S. B., & You, F. (2013). The case for organic photovoltaics. RSC Adv., 3, 17633– 17648. https://doi.org/10.1039/c3ra42989j
  • de Miguel, G., Camacho, L., & García-Frutos, E. M. (2016). 7,7′-Diazaisoindigo: a novel building block for organic electronics. J. Mater. Chem. C, 4(6), 1208–1214. https://doi.org/10.1039/C5TC03464G
  • Dutta, G. K., Han, A. R., Lee, J., Kim, Y., Oh, J. H., & Yang, C. (2013). Visible-near infrared absorbing polymers containing thienoisoindigo and electron-rich units for organic transistors with tunable polarity. Advanced Functional Materials, 23(42), 5317–5325. https://doi.org/10.1002/adfm.201300536
  • Estrada, L. A., Stalder, R., Abboud, K. A., Risko, C., Bredas, J. L., & Reynolds, J. R. (2013). Understanding the electronic structure of isoindigo in conjugated systems: A combined theoretical and experimental approach. Macromolecules46(22), 8832–8844. https://doi.org/10.1021/ma4013829
  • Goetzberger, A., & Hebling, C. (2000). Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 62(1), 1–19. https://doi.org/10.1016/S0927- 0248(99)00131-2
  • Grenier, F., Berrouard, P., Pouliot, J.-R., Tseng, H.-R., Heeger, A. J., & Leclerc, M. (2012). Synthesis of new n-type isoindigo copolymers. Polymer Chemistry, 4(6), 1836–1841. https://doi.org/10.1039/C2PY20986A
  • Günes, S., Neugebauer, H., & Sariciftci, N. S. (2007). Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews, 107(4), 1324–1338. https://doi.org/10.1021/cr050149z
  • Herzog, A. V., Lipman, T. E., & Kammen, D. M. (2001). Renewable energy sources. Encyclopedia of Life . Retrieved from http://rael.berkeley.edu/old_drupal/sites/default/files/old-site-files/2001/HerzogLipman-Kammen-RenewableEnergy-2001.pdf
  • Hideki, S., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of Electrically-Conducting organic Polymers: Halogen Derivatives of Polyacatylene, (CH)x. J.C.S., Chemical Communications, (16), 1–5. https://doi.org/10.1039/c39770000578
  • Leclerc, M. (1999). Optical and electrochemical transducers based on functionalized conjugated polymers. Advanced Materials, 11(18), 1491–1498. https://doi.org/10.1002/(SICI)1521 -4095(199912)11:18<1491::AIDADMA1491>3.0.CO;2-O
  • Leclerc, M., & Faid, K. (1997). Electrical and optical properties of Processable Polythiophene Derivatives: Structure-Property relationships. Advanced Materials9(14), 1087–1094. https://doi.org/10.1002/adma.19970091404
  • Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Ade. H., & Yan, H. (2014). Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 5:5293(9), doi: 10.1038/ncomms6293. https://doi.org/10.1038/ncomms6293
  • Mei, J., Graham, K. R., Stalder, R., & Reynolds, J. R. (2010). Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells. Organic Letters, 12(4), 660–663. https://doi.org/10.1021/ol902512x
  • Morin, J.-F., Leclerc, M., Adès, D., & Siove, A. (2005). Polycarbazoles: 25 Years of Progress. Macromolecular Rapid Communications, 26(10), 761 –778. https://doi.org/10.1002/marc.200500096
  • Neher, D. (2001). Polyfluorene homopolymers: Conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromolecular Rapid Communications. https://doi.org/10.1002/1521 -3927(20011101)22:17<1365::AIDMARC1365>3.0.CO;2-B
  • Rand, B. P., Genoe, J., Heremans, P., & Poortmans, J. (2007). Solar Cells Utilizing Small Molecular Weight Organic Semiconductors. Prog. Photovolt: Res. Appl., 15(February 2013), 659–676. https://doi.org/10.1002/pip
  • Rehahn, M., Schlüter, A. D., Wegner, G., & Feast, W. J. (1989). Soluble poly(paraphenylene)s. 2. Improved synthesis of poly(para-2,5-di-n-hexylphenylene) via Pdcatalysed coupling of 4-bromo-2,5-di-n-hexylbenzeneboronic acid. Polymer. https://doi.org/10.1016/0032-3861(89)90079-7
  • Sathiyan, G., Sivakumar, E. K. T., Ganesamoorthy, R., Thangamuthu, R., & Sakthivel, P. (2016). Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Letters, 57(3), 243–252. https://doi.org/10.1016/j.tetlet.2015.12.057
  • Scharber, M. C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J., & Brabec, C. J. (2006). Design rules for donors in bulk-heterojunction solar cells Towards 10 % energy-conversion efficiency. Advanced Materials, 18(6), 789–794. https://doi.org/10.1002/adma.200501717
  • Sonar, P., Tan, H.-S., Sun, S., Lam, Y. M., & Dodabalapur, A. (2013). Isoindigo dye incorporated copolymers with naphthalene and anthracene: promising materials for stable organic field effect transistors. Polymer Chemistry, 4(6), 1983. https://doi.org/10.1039/c2py20942j
  • Stalder, R., Mei, J., Graham, K. R., Estrada, L. a, & Reynolds, J. R. (2013). Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics. Chemistry of Materials, 26(1), 664–678. https://doi.org/10.1021/cm402219v
  • Stalder, R., Mei, J., & Reynolds, J. R. (2010). Isoindigo-based donor-acceptor conjugated polymers. Macromolecules, 43(20), 8348–8352. https://doi.org/10.1021/ma1018445
  • Stalder, R., Mei, J., Subbiah, J., Grand, C., Estrada, L. A., So, F., & Reynolds, J. R. (2011). n-Type Conjugated Polyisoindigos. Macromolecules, 44(16), 6303–6310. https://doi.org/10.1021/ma2012706 Tang, W. C. (1986). Two-layer Organic Photovoltaic Cell, 48(2), 183–185.
  • Wang, E., Ma, Z., Zhang, Z., Henriksson, P., Inganäs, O., Zhang, F., & Andersson, M. R. (2011a). An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. Chemical Communications, 47(17), 4908. https://doi.org/10.1039/c1cc11053e
  • Wang, E., Ma, Z., Zhang, Z., Vandewal, K., Henriksson, P., Inganäs, O., Zhang, F. & Andersson, M. R. (2011 b). An Easily Accessible Isoindigo-Based Polymer for HighPerformance Polymer Solar Cells. Journal of the American Chemical Society, 133(36), 14244–7. https://doi.org/10.1021/ja206610u
  • Wang, E., Mammo, W., & Andersson, M. R. (2014). 25th anniversary article: Isoindigobased polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Advanced Materials, 26(12), 1801 –1826. https://doi.org/10.1002/adma.201304945
  • Watanabe, A., Murakami, S., Mori, K., & Kashiwaba, Y. (1989). Electronic properties of polypyrrole/n-Si heterojunctions and polypyrrole/metal contacts. Macromolecules22(11), 4231–4235. https://doi.org/10.1021/ma00201a016
  • Wohrle, B. D., & Meissner, D. (1991). Organic Solar Cells, 3, 129–138.
  • Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer Photovoltaic Cells – Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science, 270(5243), 1789–1791. https://doi.org/10.1126/science.270.5243.1789
  • Zhang, G., Fu, Y., Xie, Z., & Zhang, Q. (2011). Synthesis and Photovoltaic Properties of New Low Bandgap Isoindigo-Based Conjugated Polymers. Macromolecules, 44(6), 1414–1420. https://doi.org/10.1021/ma102357b
  • Zhang, S., Ye, L., Zhao, W., Yang, B., Wang, Q., & Hou, J. (2015). Realizing over 10% efficiency in polymer solar cell by device optimization. Science China Chemistry58(2), 248–256. https://doi.org/10.1007/s11426-014-5273-x
  • Zhou, H., Yang, L., & You, W. (2012). Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules, 45(2), 607–632. https://doi.org/10.1021/ma201648t

Download Full Paper Here (Right-Click and Save As..)

Characterization of Different Metal Oxide Promoted Alumina Catalyst

S.M. Anisuzzamana,b,*, Awang Bonob, Duduku Krishnaiahb, F. A. LahinbC. Ramlanb
aEnergy Research Unit (ERU),
bChemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, MALAYSIA.
*Correspondence author. Tel: +6088-320000 ext. 3222, Fax: +6088-320348, E-mail address: anis_zaman@ums.edu.my; dr.anis.ums@gmail.com

ABSTRACT. In this study, different metal oxide alumina promoted catalysts were prepared and characterized. All the catalysts (CaO/Al2O3, CuO/Al2O3, FeO/Al2O3MnO/Al2O3, NiO/Al2O3 and ZnO/Al2O3) were prepared using the incipient wetness impregnation method followed by drying and calcination. The characterization of all six samples of catalysts was done to determine the surface morphology, porosity, functional group, thermal stability, metal content and particle size distribution. Scanning electron microscope (SEM) analysis of samples showed that there were pores on the surface of the alumina. Mercury intrusion porosimetry (MIP) showed that copper oxide alumina promoted (CuO/Al2O3) had the high porosity which is 36.77 m2/g followed by zinc oxide (ZnO/Al2O3), calcium oxide (CaO/Al2O3) nickel oxide (NiO/Al2O3) manganese oxide (MnO/Al2O3) and ferric oxide alumina promoted (FeO/Al2O3) catalysts. Fourier transform infrared spectroscopy (FTIR) analysis showed the presence of by-product existed in all catalysts. Atomic absorption spectroscopy (AAS) analysis showed the presence of Cu, Fe and Zn in the CuO/Al2O3, FeO/Al2O3 and ZnO/Al2O3, while Ca was absent in CaO/Al2O3Besides, through thermo-gravimetric analyzer (TGA) and differential thermal analysis (DTA), all the catalysts showed a slight decrease in weight which can be considered as a stable catalyst. The particle size distribution analysis using the Zetasizer showed the particle size mean based on the intensity of CaO/Al2O3, CuO/Al2O3, FeO/Al2O3MnO/Al2O3, NiO/Al2O3 and ZnO/Al2O3 were 2305 nm, 5560 nm, 5560 nm, 1281 nm, 1281 nm and 3580 nm, respectively.

KEYWORDS. Biofuel, metal oxide promoted alumina catalyst, wet incipient impregnation method

 

REFERENCES:

  • Aliyu, A. S., Ramli, A. T.,Saleh, M. A. 2014. Environmental impact assessment of a new nuclear power plant (NPP) based on atmospheric dispersion modeling. Stochastic Environmental Research and Risk Assessment 28 (7): 1897-1911.
  • Bakar, W. A.W. A., Othman, M.Y., Ali, R. Yong, C.K., Toemen, S. 2009. The investigation of active sites on nickel oxide based catalysts towards the in-situ reactions of methanation and desulfurization. Modern Applied Science 3(2): 35-43.
  • Bridgwater, A.V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38: 68-94.
  • Buitrago-Sierra, R., Ruiz-Martínez, J., Serrano-Ruiz, J.C., Rodríguez-Reinoso, F., A. Sepúlveda-Escribano A. 2012. Ethanol Steam Reforming on Ni/Al2O3 Catalysts: Effect of the Addition of Zn and Pt. Journal ofColloid and Interface Science 383(1): 148-154.
  • Dorado, M.P. Ballesteros, E. Arnal,. J. M. Gómez, J. López, F.J. 2003. Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel 82(11): 311- 1315.
  • Gan, P. Y., Li, Z. D. 2008. An econometric study on long-term energy outlook and the implications of renewable energy utilization in Malaysia. Energy Policy 36(2):890- 899.
  • Haber, J., Block, J. H., Delmon, B. 1995. Manual of methods and procedures for catalyst characterization. Pure and Applied Chemistry 67: 1257-1306.
  • Hagen, J. 2006. Industrial catalysis: A practical approach. Wiley-VCH Verlag GmbH & Co. , 1-14.
  • Hashim H, Ho, W. S. 2011. Renewable energy policies and initiatives for a sustainable energy future in Malaysia. Renewable and Sustainable Energy Reviews 15(9):4780- 4787.
  • Huang, H., Young, N., Williams, B.P. , Taylor, S.H., Hutchings, G. 2005. COS hydrolysis using zinc-promoted alumina catalysts. Catalysis Letters 104(1): 17-21.Kiss, E., Ratkovic, S., Vujicic, D., Boskovic, G. 2012. Accelerated polymorphous transformations of alumina induced by copper ions impede spinal formation. Indian Journal of Chemistry 51(A): 1669-1676.
  • Li, G. 2005. FT-IR studies of zeolite materials: characterization and environmental applications. The University of Iowa’s Institutional Repository, Ph.D thesis.
  • McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37-46
  • Nascimento, J. C., Sousa, J. F., Rojas, L.O. A., Fontes, F.A.O. 2011. Synthesis and characterization of CuCl2 /SiO2 catalyst for the oxychlorination of methane. Brazilian Journal of Petroleum and Gas 5(2): 55-63.
  • Ookawa. M. 2012. Synthesis and characterization of Fe-Imogolite as an oxidation catalyst. InTech, 239-258.
  • Pua, F., Fang, Z. Zakaria, S. Z., Guo, F. Chin-Hua, C. 2011. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnology for Biofuels 4: 56.
  • Rosal, R., Gonzalo, M.S., Rodríguez, A., García-Calvo E. 2010. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide. Journal of Hazardous Materials 183(1-3), 271–278.
  • Zabeti , M., Daud , W.M.A.W., Aroua M.K. 2010. Biodiesel production using aluminasupported calcium oxide: an optimization study. Fuel Processing Technology 91(2) 243–248.
  • Zabeti , M., Daud , W.M.A.W., Aroua M.K. 2009. Optimization of the activity of cao/al2o3 catalyst for biodiesel production using response surface methodology. Applied Catalysis A: General 366 (1) 154-159.

 

Download Full Paper Here (Right-Click and Save As..)

Complex Intuitionistic Fuzzy Subrings

Mikhled1* Okleh Alsarahead, Abd Ghafur1 Ahmad
1School of Mathematical Science, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, Malaysia.
*Corresponding author’s email: mekhledsarheed@yahoo.com

ABSTRACT. In this paper, we defined the complex intuitionistic fuzzy subring and introduced some new concepts like Intuitionistic fuzzy sets and homogeneous complex intuitionistic fuzzy sets. Then, we investigated some of characteristics of complex intuitionistic fuzzy subring. The relationship between complex intuitionistic fuzzy subring and intuitionistic fuzzy subring is also investigated. It is found that every complex intuitionistic fuzzy subring yields two intuitionistic fuzzy subring. Finaly, we defined the image and inverse image of complex intuitionistic fuzzy subring under ring homomorphism, and thus studied their elementary properties.

KEYWORDS. Intuitionistic fuzzy set, intuitionistic fuzzy subring, homogeneous complex intuitionistic fuzzy set, complex intuitionistic fuzzy subring.

 

REFERENCES:

  • Alkouri, A. & Salleh A. 2012. Complex intuitionistic fuzzy sets, in Proceedings of the International Conference on Fundamental and Applied Sciences (ICFAS ’12), vol. 1482 of AIP Confere Proceedings, (2012) 464-470.
  • Alsarahead, M. & Ahmad, A. 2017a. Complex Fuzzy Subgroups, Applied Mathematical Sciences, 11 (41):2011-2021.
  • Alsarahead, M. & Ahmad, A. 2017b. Complex Fuzzy Subrings, International Journal of Pure and Applied Mathematics, accepted for publication.
  • Alsarahead, M. & Ahmad, A. 2017c. Complex Intuitionistic Fuzzy Subgroups, submitted to Italian Journal of Pure and Applied Mathematics. Atanassov, K.T. 1986. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1): 87-96.
  • Hur, K. Kang, H.W. & Song, H.K. 2003. Intuitionistic fuzzy subgroups and subrings, Honam Mathematical Journal, 25 (2): 19-41.
  • Ramot, D. Milo, R. Friedman, M. & Kandel, A. 2002. Complex fuzzy sets, IEEE Transaction on Fuzzy Systems, 10 (2):171-186.
  • Banerjee, B. & Basnet, D.K. 2003. Intuitionistic fuzzy subrings and ideals, The Journal of Fuzzy Mathematics, 11 :139-155.
  • Zadeh, L.A. 1965. Fuzzy sets, Information and Control, 8 :338-353.

Download Full Paper Here (Right-Click and Save As..)

On the General Solution of 2th Order Linear Differential Equation

J. López-Bonilla, G. Posadas-Durán, O. Salas-Torres
ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México.
Email: lopezb@ipn.mx

ABSTRACT. We employ a method of factorization to obtain the general solution of the second order linear differential equation, which is an alternative procedure to the usual Variation of Parameters method of Lagrange. We consider that our approach can be adapted to linear differential equations of the third and fourth order.

KEYWORDS. Linear differential equation of second order, Variation of parameters, Factorization method.

REFERENCES:

  • A. Hernández-Galeana, J. López-Bonilla, R. López-Vázquez, On the second order linear differential equation, Pure and Appl. Maths. Lett. 2 (2014) 31-34.
  • G. Bahadur Thapa, A. Domínguez-Pacheco, J. López-Bonilla, On the linear differential equation of second order, Prespacetime Journal 6, No. 10 (2015) 999-1001.
  • G. Krishna Srinivasan, A note on Lagrange’s method of variation of parameters, Missouri J. Math. Sci.19 (2007) 11-14.
    J. H. Caltenco, J. López-Bonilla, J. Morales, G. Ovando, On an iterative method to solve 2th order homogeneous linear differential equations, Inform. Sci. Comput. No. 1 (2014) 1-8.
  • A. Hernández-Galeana, J. López-Bonilla, R. López-Vázquez, On the second order linear differential equation, Pure and Appl. Maths. Lett. 2 (2014) 31-34.
  • J. López-Bonilla, A. Zaldívar-Sandoval, J. Yaljá Montiel, 2th order linear differential operator in its exact form, J. Vect. Rel. 5, No. 1 (2010) 139-141.
  • J. López-Bonilla, S. Vidal-Beltrán, S. Yáñez-San Agustín, Homogeneous linear differential equation ofsecond order, Prespacetime Journal 7, No. 13 (2016) 1786-1788. J. López-Bonilla, G. Posadas-Durán, O. Salas-Torres, Variational principle for, Prespacetime Journal 8, No. 2 (2017) 226-228.
  • J. López-Bonilla, B. Man Tuladhar, B. Moreno-Ley, On the 3rd. order linear differential equation, Kathmandu Univ. J. Sci. Eng. & Techn. 8, No. 2 (2012) 7-10.
  • T. Quinn, S. Rai, Variation of parameters in differential equations, PRIMUS 23, No. 1 (2012) 25-44.
  • V. Barrera F., J. López-Bonilla, R. López-Vázquez, On the particular solution of Prespacetime Journal 7, No. 12 (2016) 1677-1679.
  • Z. Ahsan, Differential equations and their applications, Prentice-Hall, New Delhi (2004).
  • Z. Ahsan, R. Cruz-Santiago, J. López-Bonilla, Linear differential equations of third and fourth order, Aligarh Bull. Maths. 31, No. 1 (2012) 5-7

 

Download Full Paper Here (Right-Click and Save As..)

On the Roots of the Legendre Laguerre, and Hermite Polynomials

 S. Álvarez-Ballesteros, J. López-Bonilla, R. López-Vázquez,
ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
*jlopezb@ipn.mx

ABSTRACT. For several orthogonal polynomials, Cohen proved that their roots are the eigenvalues of symmetric tridiagonal matrices. In this paper, we give examples of this Cohen’s result for the Legendre, Laguerre, and Hermite polynomials, which are useful in applications to quantum mechanics and numerical analysis.

KEYWORDS: Laguerre and Hermite polynomials, Leverrier-Takeno’s technique, Legendre polynomials.

 

REFERENCES:

  • A. Bucur, B. E. Carvajal-Gámez, J. López-Bonilla, Laguerre polynomials: Their Laplace transform via equidistant interpolation, J. Sci. Res. 53 (2009) 257-258.
  • A. M. Cohen, An algebraic approach to certain differential eigenvalue problems, Linear Algebra and its Appls. 240 (1996) 183-198.
  • A. M. Cohen, Numerical methods for Laplace inversion, Springer, New York (2007). C. Lanczos, Applied analysis, Dover, New York (1988). D. S. Watkins, The QR algorithm revisited, SIAM Rev. 50 (2008) 133-145.
  • E. R. Smith, Zeroes of the hermitean polynomials, Am. Math. Monthly 43 (1936) 354-358. F. Pidduck, Laguerre polynomials in quantum mechanics, J. London Math. Soc. (1) 4 (1929) 163-166.
  • G. Golub, F. Uhlig, The QR algorithm: 50 years later its genesis by John Francis and Vera Kublanovskaya and subsequent developments, IMA J. Numer. Anal. 29, No. 3 (2009) 467-485.
  • H. E. Salzer, R. Zucker, R. Capuano, Table of the zeros and weight factors of the first twenty Hermite polynomials, J. Res. Nat. Bureau Stand. 48, No. 2 (1952) 111-116.
  • http://mathworld.wolfram.com/Laguerre-GaussQuadrature.html
  • https://math.stackexchange.com/questions/104845/the-roots-of-hermite-polynomials-are-allreal
  • I. Guerrero-Moreno, J. López-Bonilla, J. Rivera-Rebolledo, Leverrier-Takeno coefficients for the characteristic polynomial of a matrix, J. Inst. Eng. 8, No. 1-2 (2011) 255-258.
  • J. H. Caltenco, J. López-Bonilla, J. Rivera-Rebolledo, Gaussian quadrature via Hermite and Lagrange interpolations, J. Sci. Res. 55 (2011) 177-180.
  • J. G. F. Francis, The QR transformation: A unitary analogue to the LR transformation, The Computer Journal 4, No. 3 (1961) 265-271 and 332-345.
  • J. H. Caltenco, J. López-Bonilla, R. Peña-Rivero, Morse’s radial wave function, Lithuanian J. of Phys. 50, No. 4 (2010) 403-404.
  • J. López-Bonilla, A. Lucas-Bravo, S. Vidal-Beltrán, Integral relationship between Hermite and Laguerre polynomials: Its application in quantum mechanics, Proc. Pakistan Acad. Sci. 42, No. 1 (2005) 63-65.
  • J. López-Bonilla, B. Man Tuladhar, R. Peña-Rivero, Relationship between wave functions of two-dimensional hydrogen atom in parabolic and polar coordinates, J. Sci. Res. 54 (2010) 219-22.
  • J. López-Bonilla, R. López-Vázquez, H. Torres-Silva, On the Legendre polynomials, Prespacetime Journal 6, No. 8 (2015) 735-739.
  • J. López-Bonilla, G. Posadas-Durán, On the Saha’s generating function for the Hermite polynomials, Prespacetime Journal 7, No. 13 (2016) 1805-1806.
  • J. López-Bonilla, R. López-Vázquez, V. M. Salazar del Moral, On some identities for the Laguerre polynomials, Prespacetime Journal 8, No. 10 (2017) to appear.
  • J. Mawhin, A. Ronveaux, Schrödinger and Dirac equations for the hydrogen atom, and Laguerre polynomials, Arch. Hist. Exact Sci. 64 (2010) 429-460.
  • R. Cruz-Santiago, J. López-Bonilla, S. Yáñez-San Agustín, A note on the Laguerre polynomials, Prespacetime Journal 8, No. 4 (2017) 511-512.
  • R. E. Greenwood, J. J. Miller, Zeros of the Hermite polynomials and weights for Gauss mechanical quadrature formula, Bull. Am. Math. Soc. 54, No. 8 (1948) 765-769.
  • V. Barrera-Figueroa, J. López-Bonilla, J. Sosa, Multiple root finder algorithm for Legendre and Chebyshev polynomials via Newton’s method, Annales Mathematicae et Informaticae 33 (2006) 3-13.
  • V. Barrera-Figueroa, J. López-Bonilla, J. Sosa, Method of moments and non-uniform sampling via Legendre polynomials roots, Bol. Soc. Cub. Mat. Comp. 7, No. 1 (2009) 19-33.
  • V. N. Kublanovskaya, Certain algorithms for the solution of the complete eigenvalue problem, Soviet Math. Dokl. 2 (1961) 17-19.Download Full Paper Here (Right-Click and Save As..)

Relationship between Water Quality & Black Flies (Diptera: Simuliidae) Abundance in Tambunan District, Sabah

Nur Ashiqin Abdul Hamid1*, Maria Lourdes T. Lardizabal1, Hiroyuki Takaoka2Estherpeni Stephen1 & Maznah Mahali
1Faculty of Science and Natural Resources, University Malaysia Sabah, Jln. UMS, 88400 Kota Kinabalu, Sabah, Malaysia
2Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
Corresponding author: Nur Ashiqin Abudul Hamid Email: ashiqinhamid@gmail.com

ABSTRACT. A study to investigate the relationship between black flies (Simuliidae) pupa abundance and physio-chemical parameters such as velocity, water temperature, pH, dissolved oxygen, conductivity and total dissolved solid was conducted at Tambunan district, Sabah. A total of six rivers were selected as sampling stations. Five sampling points located at a distance of 5-10 meters were established in each sampling station. Sampling was conducted every fortnight for a duration of six months from October 2015 until March 2017. Samples of black flies larvae and pupae were manually collected from substrates consisting of grasses, plant roots and plastics which were found stuck in between the rocks with running water area. Water quality parameters that were measured during every sampling, include water temperature, velocity, pH, dissolved oxygen, conductivity and total dissolve solids (TDS). Results from this study showed that The Principal Component Analysis (PCA) revealed two PC’s which had eigenvalues >1.0 and together accounted for 78% total variability of the physio-chemical parameters. PC-1 which accounted 56% of variability defined a normal temperature (23-250C), high water velocity, high dissolved oxygen, low conductivity and low total dissolved solid. While PC-2 explained 22% of the variability was related to water pH. Pearson’s correlation result shows that only velocity had a significant relationship with the abundance of black flies (r=0.512, p<0.01), while other parameters did not show any significant relationship with its abundance. In conclusion, results from this study revealed that only water velocity had a significant relationship with the abundance of black flies.

KEYWORDS: Black flies, physio-chemical parameters, Tambunan.

 

REFERENCES:

  • Adler, P.H., Currie, D.C., & Wood, D.M. (2004). The Black flies (Simuliidae) of North America. ROM Publication in Sciences, New York, NY
  • Adler, P. H. (2005). Black flies, the Simuliidae. In W. C. Marquardt (ed.).Biology of DiseaseVectors, 2ndedition. Elsevier Academic Press, San Diego. 127-140 pp.
  • Butler, J.F & Hogsette, J A. (1998). Blackflies. Simulium spp.(Insecta:Diptera:Simuliidae). University of Florida, IFAS Extension,EENY-030. Retrieved 23th November 2015.(http://entomolpgy.ifas.ufl.edu).
  • Catherine A.H, Jessica P & John F. (2010). Black Flies : Biology and Public Health Risk Department of Entomology. Purdue University, E-251-W.
  • Cummins, K.W. (1988). The functional role of black flies in streamecosystems,pp.1 -10.
  • In Kim, K.C. & Merrit, R.W (eds) Black flies : Ecology, Population Management, and Annotated World List. Pennslvania State University, University Park, P.A.
  • Craig, D.A. (2003). Geomorphology, Development of Running Water Habitats, and Evolutiuon of Black flies on Polynesian Islands. BioScience. 53 (11):1079-1093 pp.
  • Creadie, J.W., Adler, P.H & Beard, C.E. (2011). Ecology of Symbiotes of Larval Blackflies (Diptera: Simuliidae): Distribution, Diversity and Scale. Entomological Society of America. Environmental Entomology. 40 (2): 259-302 pp.
  • Department of Environment. (2006). Malaysia Environmental Quality Report. Ministry of Natural Resources and Environment Malaysia, Kuala Lumpur. 86 pp.
  • Doisy, K.E, Hall, R.D. & Fischer, F.J. (1986). The Black flies (Diptera: Simuliidae) of an Ozark Stream in South Missouri and Associated Water Quality Measurement. Journal of The Kansas Entomology Society. 59 (1): 133-142 pp.
  • Hamada, N., & Grillet, M. E. (2001). Black flies (Diptera  :Simuliidae) of the Gran Sabana keys for larvae and pupae, 16 (1):29-49 pp.
  • Hart, D.D. (1986). The Adaptive Significant of Territoriality in Filter-Feeding Larval Blackflies (Diptera:Simuliidae).Oikos, Vol. 46, (1): 88-92 pp.
  • Laurince, M. Y., Celestin, B. A & Philippe, K. (2013). Composition, abundance and diversity of aquatic insects in fishponds of southern Ivory Coast, West Africa. FaunisticEntomology. 66:123-133 pp.
  • Popoola, K. O. K & Otalekor, A. 2011. Analysis of Aquatic Insect’s Community of Awba Reservoir and its Physio-chemical Properties. Journal of Environmental and Earth Science. 3(4):422- 428 pp.
  • Scheibler, E. E., & Debandi, G. O. 2008. Spatial and Temporal patterns in the aquatic community of high altitude Andean stream (Mendoza, Argentina). Aquatic Insect. Taylor and Francis Group. 30 (2): 145-161
  • Siddaramu, D & Puttaiah, E.T. (2013). Physiochemical characteristic of Balagala Kere and Purali Kere of Shimoga District, Karnataka, India. International Journal of Advanced Research. 1 (8):313-321pp.
  • Srisuka, W. Takaoka. H, Yatsushi, O. Masako. F, Sorawat. T, Kristsana. Y, Wej. C, Atiporn, S. 2015.Seasonal biodiversity of black flies (Diptera: Simuliidae) and evaluation of ecological factor influencing species distribution at Doi Pha Hom Pok National Park, Thailand. Elsevier. 149: 212-219.
  • Takaoka, H. (2001). Two new and three newly recorded species of Black flies(Diptera: Simuliidae) in Sabah, Malaysia.Japanese Journal of Tropical Medicine and Hygiene. 29: 111 114 pp.
  • Takaoka, H. (2008). Taxonomic revision of tuberosum species-group of Simulium (Simulium) in Sabah and Sarawak, Malaysia (Diptera:Simuliidae). Med Entomology and Zoology. 59 (2): 55-80 pp. Takaoka, H., Sofian, M.A. Rosli, H.
  • Yasushi, O. Daicus, M.B. & Tan, P.E. (2012). Relationships of Black fly species of the Simulium tuberosum species group (Diptera: Simuliidae) in Peninsular Malaysia, with keys to ten Malaysia Species. The Raffles Bulletin of Zoology. 60 (2): 533-538 pp.
  • Takaoka, H. (1996). Description of a new species of Simulium (Simulium) from Sabah, Malaysia (Diptera :Simuliidae). Journal of Japan Medical Zoology. 24 (3). 157-161 pp.
  • Tariq, M. , Ali, M & Shah, Z. (2006). Characteristic of industrial effluents and their possible impacts on quality of underground water. Soil & Environment. 25 (1) :64-49pp.
  • Vincent, H., & John, D. 1975. Water Quality Monitoring and Aquatic Organism: The Importance of Species Identification. Vol. (47).No 1, pp.9-19
  • Zhang, Y., Malmqvist, B. & Englund, G. (1998). Ecological processes affecting community structure of black fly larvae in regulated and unregulated rivers. Journal of Applied Ecology, 35: 678-686 pp.
  • Zubaidah, Y. Takaoka, H. Pramual, P. Low, V.L. & Sofian, A.M. 2016. Breeding habitat preference of preimaginal black flies (Diptera: Simuiidae) in Peninular Malaysia. Acta Tropica, Elsevier. 153: 57-63.

Download Full Paper Here (Right-Click and Save As..)

VOLUME 38, Issue 1

List Of Papers
CHEMICAL CHARACTERISTICS AND MICROBIAL DIVERSITY OF SOILS FROM MENENGAI CRATER IN KENYA
Paul Njenga Waithaka1*, Francis B. Mwaura1, John M. Wagacha1, Eliud M. Gathuru2, Francis M. Ngumbu2 and Anderson K. Mwangi2

TYPE AND QUANTITY OF MARINE DEBRIS AT SELECTED PUBLIC BEACHES IN SABAH (TG. ARU & KOSUHOI) DURING DIFFERENT MONSOON SEASONS
Julyus-Melvin Mobilik1,*, Teck-Yee Ling1Mohd-Lokman Bin Husain2, & Ruhana Hassan1

A REVIEW ON THE IMPACT OF ANTHROPOGENIC NOISE ON BIRDS
Emily A. Gilbert, Jephte Sompud*, Cynthia B. Sompud

BIRD POPULATION IN TWO YEARS OLD Acacia mangium PLANTATION, SABAH FOREST INDUSTRIES SDN BHD
Kee Sze Lue, Jephte Sompud*, Lee Woon Jah, Cynthia Boon Sompud, Emily Gilbert

GEOTOURISM POTENTIAL AT SILAM COAST CONSERVATION AREA (SCCA) SILAM, SABAH
Zulherry Isnain1, *Junaidi Asis1, Hazerina Pungut2, Sanudin Tahir2, Baba Musta1 & Hardianshah Saleh2

 

DOWNLOAD FULL VOLUME HERE (Right click and Save As..)

 

CHEMICAL CHARACTERISTICS AND MICROBIAL DIVERSITY OF SOILS FROM MENENGAI CRATER IN KENYA

Paul Njenga Waithaka1*, Francis B. Mwaura1, John M. Wagacha1, Eliud M. Gathuru2, Francis M. Ngumbu2 and Anderson K. Mwangi2
1University of Nairobi, school of biological sciences, P. O. Box, 30197-00100 Nairobi, Kenya
2Egerton University, Department of biological sciences, P. O. Box, 536 Njoro, Kenya
Corresponding author; Paul Njenga Waithaka, Cell; +254 721104637, Email; waithakanj@gmail.com, waithakanj@yahoo.com

ABSTRACT A total of 98 soil samples collected from Menengai geothermal site located in Nakuru, Kenya were analyzed for their chemical and microbial components. In region A, phosphorus, sodium, nitrogen and carbon were deficient, region B and C, phosphorus and manganese while in while in D the deficient minerals were phosphorus, sodium, nitrogen and carbon. Toxic minerals were calcium and magnesium in regions A, B, C and D. The most prevalent bacteria were Escherichia coli with a mean of (3.35×107) while the least were Bacillus sp. (1.40×105). Among the fungi, the most dominant were Aspergillus nomius with a mean of 4.42x 104 with the least been Panicillium sacculum (8.09×103). As much as geothermal exploration is important in boosting the country’s energy reserves, there is need to rehabilitate the caldera so as to restore the microbial composition of the region.

Keywords: diversity, crater, geothermal, Menengai, microbial, chemical

 

REFERENCES

  • Abdullah M. Al-Dhabaan, K. and Ali H. (2016). Identification of contaminated soil from isolated fungi in Riyadh province. Life Science Journal, 13(2): 123-128.
  • Connor, N., Sikorski, J. and Rooney, A. P. (2010) Ecology of speciation in the Genus Bacillus. Applied Environmental Microbiology, 76:1349-1358.
  • Commichau, F. M., Pietack, N. and Stu¨ lke, J. (2013). Essential genes in Bacillus subtilis: a re-evaluation after ten years. Molecular Biosystems, 9: 1068–1075. Das, M. and Anitha, S. (2011). Mycoremediatio of moocrotophos, International Journal Pharmaceutical Sciences, 2(1): 337-342.
  • Dhiva, S., Jaishanker Pillai, H.P. and Shinde, V. M. (2016). Isolation and characterization of soil microorganisms for potential biocontrol activity. Internatinoal Journal of Current Research in Biological Sciences, 3(3): 26-29.
  • Egejuru, A. L., Alessandro, W. D., Tagliavia, M., Parello, F. and Quatrini, P. (2014). Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy). Journal of Biogeosciences, 11: 5865–5875.
  • Gagliano, A. L., Alessandro, W. D., Tagliavia, M., Parello, F. and Quatrini, P. (2014). Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy). Journal of Biogeosciences, 11: 5865–5875.
  • Galperin, M. Y., Mekhedov, S. L., Puigbo, P., Smirnov, S., Wolf, Y. I. and Rigden, D. J. (2012). Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Journal of Environmental Microbiology, 14: 2870–2890.
  • Guo, Y., Fujimura, R., Sato, Y, Suda, W., Kim, S., Oshima, K., Hattori, M., Kamijo, T., Narisawa, K. and Ohta, K. (2014). Characterization of Early Microbial Communities on Volcanic Deposits along a Vegetation Gradient on the Island of Miyake, Japan. Journal of Microbes in the Environment, 29 (1):38-49.
  • Jasuja, J. L., Kumar, G., Rao, K. V. (2013). Screening of pectinase producing microorganisms from agricultural waste dump soil. Asian Journal of Biochemistryand Pharmaceutical Research 2:329- 337.
  • Jugran, J., Rawat, N. and Joshi, G. (2015). Amylase production by Geobacillus sp. GJA1 isolated from a hot spring in Uttarakhand. ENVIS Himalayan ecology, 23: 120-125.
  • Karthik, L., Singh, K., Bose, H., Richa, K., Gaurav, K. and Bhaskara, R. (2012). Isolation and characterization of protease producing marine eubacteria. Journal of Agricultural Technology, 8(5): 1633-1649.
  • Khursheed, A. W., Rajni, Y., Shivom, S. and Krishan, K. U. (2014). Comparative Study of Physicochemical Properties and Fertility of Soils in Gwalior, Madhya.Pradesh. World Journal of Agricultural Sciences, 10 (2): 48-56.
  • Kumar, M., Yadav, A. N., Tiwari, R., Prasanna, R. and Saxena, A. K. 2014. Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Annals of Microbiology, 64: 741 -751.
  • Mamta J., Rashmi S., A. K. Sharma, K. and Anil, P. (2013). Isolation and characterization of Fusarium oxysporum, a wilt causing fungus, for its pathogenic and non-pathogenic nature in tomato (Solanum lycopersicum). Journal of Applied and Natural Science 5 (1): 108-117.
  • Mariita, N. O. (2003). An integrated geophysical study of the northern Kenya rift crustal structure: implications for geothermal energy prospecting for Menengai area. A PhD dissertation, University of Texas at El Paso, USA.
  • Martins, L. F., Antunes, L. P., Pascon, R. C., de Oliveira, J. C., Digiampietri, L. A., Barbosa, D., Peixoto, B. M., Vallim, M. A. and VianaNiero (201 3). Metagenomic analysis of a tropical composting operation at the Sa˜o Paulo Zoo Park reveals diversity of biomass degradation functions and organisms. PLoS ONE (8) 619-28.
  • Omenda, P. A., Opondo, K., Lagat, J., Mungania, J., Mariita, N., Onacha, S., Simiyu, S., Wetang’ula, G., and Ouma, P. (2000). Ranking of geothermal prospects in the Kenya rift. Kenya Electricity Generating Company Limited, internal report, 121 pp.
  • Osakwe, S. A. (2014). Evaluation of Physicochemical Characteristics of Soils in the Flood Disaster Affected Areas of Isoko Region of Delta State, Nigeria. IOSR Journal of Applied Chemistry, 7(5): 24-31.
  • Paul Njenga Waithaka, Francis B. Mwaura, John M. Wagacha, Eliud M. Gathuru, Francis M. Ngaumbu and Anderson K. Mwangi Ramanadevi, V., Naik, L. S. and Aruna, K. (2013). Isolation and Biochemical characterization of protease isolated from Bacillus sp SVN12. International Journal of Research in Pure and Applied Microbiology, 3(3): 94-101.
  • Rohilla S. K. and Salar R. K. (2012). Isolation and Characterization of Various Fungal Strains from Agricultural Soil Contaminated with Pesticides. Research Journal of Recent Sciences, 1(2): 297-303.
  • Sharma, N., Vyas, G. and Pathania, S. (2013). Culturable diversity of thermophilic microorganisms found in hot springs of northern Himalayas and to explore their potential for production of industrially important enzymes. Scholars Academic Journal of Biosciences 1: 165-178.
  • Sunita, D. and Kanwar, S. (2016). Deciphering the diversity of aerobic culturable thermophiles in hot springs of Manikaran, Himachal Pradesh. International Journal of Farm Sciences, 6(1): 156-162.
  • Umar, M., Akafyi, D., Abdulkarim, I., Yaya, A. A., and Danasabe, Y. (2015). International Journal of Biological and Biomedical Sciences, 4(10): 063-066.
  • Umar, M., Yaya, A. A., Yusuf, G., Tafinta, I.Y., Aliko, A.A., Jobbi, D.Y. and Lawal, G. (2016). Biochemical characterization and antimicrobial susceptibility trends of Proteus mirabilis isolated from patients suspected with urinary tract infections attending Sickbay Hospital, Zaria, Kaduna, Nigeria. Annals of Biological Sciences, 4(2):1-8.
  • Waithaka, P. N, Muthini M. J. and Kebira A. K. (2015). Physico-chemical Analysis, Microbial Isolation, Sensitivity Test of the Isolates and Solar Disinfection of Water Running in Community Taps and River Kandutura in Nakuru North Sub-county, Kenya. The Open Microbiology Journal, 9: 117-124.

Download Full Paper Here (Right-Click and Save As.. )

TYPE AND QUANTITY OF MARINE DEBRIS AT SELECTED PUBLIC BEACHES IN SABAH (TG. ARU & KOSUHOI) DURING DIFFERENT MONSOON SEASONS

Julyus-Melvin Mobilik1,*, Teck-Yee Ling1,

Mohd-Lokman Bin Husain2, & Ruhana Hassan1
1Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia
2Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

*Email: julyus.mobilik@gmail.com

ABSTRACT. Marine debris is widely distributed at the coastal area of the global oceans, but their specific sources, quantities and distribution remains inconclusive. Although the threat from marine debris pollution has beginning to be recognized in Malaysia, comprehensive studies are still lacking to document the pollution. This study adopted a standard method of beach marine debris survey to assess the type, amount and sources of debris on a one kilometer section in Tg. Aru and Kosuhoi beaches, Sabah, during surveys in December 2012 (northeast monsoon, NEM), May 2013 (intermediate monsoon, IM) and July 2013 (southwest monsoon, SWM). The mean total debris items was 1,220±532 item/km and weighing at 52.8±17.2 kg/km, where, Kosuhoi beach (1,241 item/km or 57 kg/km) received substantially greater quantities of debris compared to Tg. Aru beach (1,199 item/km or 48 kg/km). Total debris items was more abundant during SWM (1,789 item/km) compared to NEM (1,139 item/km) and IM (733 item/km) seasons. Plastic category objects were the most numerous amounting to 1,057 item/km (86.64%) in total debris items. Clear plastic bottles, food wrappers, plastic fragments, colored plastic bottles and cups were the most abundant objects collected which they contributed 606 item/km (49.69%) from the total debris item collected. The main source of debris objects abundance was from common source which contributed 52% from the total debris objects, whereas, those from terrestrial and marine sources contributed 32% and 16% respectively.  The high percentage of terrestrial and common sources debris requires marine environment stakeholders to diversify their approach and priority in mitigating this alarming result especially during SWM period. Awareness program is an effective preventive measure that should be continued and intensified. However, the program should focus on target group to ensure the awareness effectiveness to reduce if not totally eliminate the debris in the marine environment.

KEYWORDS. Beach pollution, plastic, monsoon seasons, marine debris source, Sabah

 

REFERENCES

  • Abdullah, N. A., Nordin, M. F. M., & Muhammad, M. 2011. Study contamination of lead, cadmium and mercury in coastal water along Kelantan coast. Paper presented at the Proceeding of Plant Natural Products. Retrieved from http://umkeprints.umk.edu.my/514/1/Paper 1.pdf
  • Agamuthu, P., Fauziah, S. H., & Khairunnisa, A. K. 2012. Marine Debris on Selected Malaysian Beaches: Impacts of Human Ignorance. Paper presented at the Proceedings of The 10th. Expert Meeting on Solid Waste Management in Asia and Pacific Islands (SWAPI) 20-22 Feb 2012., Tottori, Japan. Retrieved from http://umexpert.um.edu.my/file/publication/00004264_77696.pdf
  • Barnes, D. K. A. 2002. Invasions by marine life on plastic debris. Nature, 416: 808–809. doi:10.1038/416808a
  • Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. A. 2009. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B, 364(1526): 1985–1998.
  • Browne, M. A., Crump, P., Niven, S. J., Teuten, E. L., Tonkin, A., Galloway, T. S., & Thompson, R. C. 2011. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental Science & Technology, 45(21): 9175–9179.
  • Carslaw, D., & Ropkins, K. (2014). Package “openair.” Retrieved from www.openairproject.org/PDF/OpenAir_Manual.pdf
  • Chan, E.-H., Chak, L.-H., & Der, F. P. (1996). Beached debris in Pulau Redang and a mainland beach in Terengganu. Paper presented at the Proceedings 13th Annual Seminar of the Malaysian Society of Marine Science, (pp. 99–108) Retrieved from http://www.ioseaturtles.org/bibliography_search_detail.php?id=1127
  • Cheshire, A., Adler, E., Barbière, J., Cohen, Y., Evans, S., Jarayabhand, S., … Westphalen, G. (2009). UNEP / IOC Guidelines on Survey and Monitoring of Marine Litter. UNEP Regional Seas Reports and Studies No. 186 & IOC Technical Series No. 83.
  • Chiang, E. P., Zainal, Z. A., Narayana, P. A. A., & Seetharamu, K. N. (2003). The potential of wave and offshore wind energy in around the coastline of malaysia that face the south china sea. Paper presented at the Proceedings of the International Symposium on Renewable Energy: Environment Protection & Energy Solution for Sustainable Development, 14 – 17 September 2003, Kuala Lumpur. Retrieved from http://eprints.usm.my/9925/1/The_Potential_of_Wave_and_Offshore_Wind_Energy_i n_Around_the_Coastline_of_malaysia_That_Face_The_South_China_Sea_(PPKMek anikal).pdf
  • Daily Express Newspaper online. 2014, March 31. Solving the floating garbage. Daily Express Online. Retrieved from http://www.dailyexpress.com.my/print.cfm?NewsID=88983
  • Derraik, J. G. B. 2002. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44(9): 842–52.
  • Garcon, J. S., Grech, A., Moloney, J., & Hamann, M. 2010. Relative Exposure Index: An important factor in sea turtle nesting distribution. Aquatic Conservation: Marine and Freshwater Ecosystem, 20(2): 140–149.
  • Gasim, H. A., Hashim, A. M., Bakri, P. Z. M., Samsuri, M. Z., Rais, N. L. A., & Noor, N. D. M. 2013. Marine Pollution at Northeast of Penang Island. Research Journal of Applied Sciences, Engineering and Technology, 6(8): 1348–1353.
  • Abdullah, N. A., Nordin, M. F. M., & Muhammad, M. 2011. Study contamination of lead, cadmium and mercury in coastal water along Kelantan coast. Paper presented at the Proceeding of Plant Natural Products. Retrieved from http://umkeprints.umk.edu.my/514/1/Paper 1.pdf
  • Agamuthu, P., Fauziah, S. H., & Khairunnisa, A. K. 2012. Marine Debris on Selected Malaysian Beaches: Impacts of Human Ignorance. Paper presented at the Proceedings of The 10th. Expert Meeting on Solid Waste Management in Asia and Pacific Islands(SWAPI) 20-22 Feb 2012., Tottori, Japan. Retrieved from http://umexpert.um.edu.my/file/publication/00004264_77696.pdf
  • Barnes, D. K. A. 2002. Invasions by marine life on plastic debris. Nature, 416: 808–809. doi:10.1038/416808a
  • Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. A. 2009. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B, 364(1526): 1985–1998.
  • Browne, M. A., Crump, P., Niven, S. J., Teuten, E. L., Tonkin, A., Galloway, T. S., & Thompson, R. C. 2011. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental Science & Technology, 45(21): 9175–9179.
  • Carslaw, D., & Ropkins, K. (2014). Package “openair.” Retrieved from www.openairproject.org/PDF/OpenAir_Manual.pdf
  • Chan, E.-H., Chak, L.-H., & Der, F. P. (1996). Beached debris in Pulau Redang and a mainland beach in Terengganu. Paper presented at the Proceedings 13th Annual Seminar of the Malaysian Society of Marine Science, (pp. 99–108). Retrieved from http://www.ioseaturtles.org/bibliography_search_detail.php?id=1127
  • Cheshire, A., Adler, E., Barbière, J., Cohen, Y., Evans, S., Jarayabhand, S., … Westphalen, G. (2009). UNEP / IOC Guidelines on Survey and Monitoring of Marine Litter. UNEP Regional Seas Reports and Studies No. 186 & IOC Technical Series No. 83.
  • Chiang, E. P., Zainal, Z. A., Narayana, P. A. A., & Seetharamu, K. N. (2003). The potential of wave and offshore wind energy in around the coastline of malaysia that face the south china sea. Paper presented at the Proceedings of the International Symposium on Renewable Energy: Environment Protection & Energy Solution for Sustainable Development, 14 – 17 September 2003, Kuala Lumpur. Retrieved from http://eprints.usm.my/9925/1/The_Potential_of_Wave_and_Offshore_Wind_Energy_i n_Around_the_Coastline_of_malaysia_That_Face_The_South_China_Sea_(PPKMeka nikal).pdf
  • Daily Express Newspaper online. 2014, March 31. Solving the floating garbage. Daily Express Online. Retrieved from http://www.dailyexpress.com.my/print.cfm?NewsID=88983
  • Derraik, J. G. B. 2002. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44(9): 842–52.
  • Garcon, J. S., Grech, A., Moloney, J., & Hamann, M. 2010. Relative Exposure Index: An important factor in sea turtle nesting distribution. Aquatic Conservation: Marine and Freshwater Ecosystem, 20(2): 140–149.
  • Gasim, H. A., Hashim, A. M., Bakri, P. Z. M., Samsuri, M. Z., Rais, N. L. A., & Noor, N. D. M. 2013. Marine Pollution at Northeast of Penang Island. Research Journal of Applied Sciences, Engineering and Technology, 6(8): 1348–1353.
  • Golik, A., & Gertner, Y. 1992. Litter on the Israeli coastline. Marine Environmental Research, 33(1): 1–15.
  • Gornitz, V. M., Daniels, R. C., White, T. W., Birdwell, K. R., Gornitzf, V. M., & Birdwellll, K. R. 1994. The development of a Coastal Risk assesment Database: Vulnerability to sea-level rise in the U.S. Southeast. Journal of Coastal Research, SI(12): 327–338.
  • Guannel, G., Arkema, K., Verutes, G., Guerry, A., Kim, C.-K., Papenfus, M., … Toft, J. (2011). Using Natural Habitats to Mitigate the Impact of Coastal Hazards and Inform Management Decisions. In: L. A. Wallendorf, C. Jones, L. Ewing, & B. Battalio (Eds.). Solutions to Coastal Disasters 2011, (pp. 233–245).
  • Anchorage, Alaska, United States: American Society of Civil Engineers. doi:10.1061/41185(417)22
  • Hassan, R., & Mobilik, J. M. (2012). Debris Marin: Punca dan Penyelesaian. Malaysia, Penerbit Unimas. Horsman, P. V. 1982. The amount of garbage pollution from merchant ships. Marine Pollution Bulletin, 13(5): 167–169. International Maritime Organization. (2012). Res. MEPC.201(62) – Revise MARPOL Annex V (Vol. 201). London, International Maritime Organization. Jayasiri, H. B., Purushothaman, C. S., & Vennila, A. 2013. Plastic litter accumulation on high-water strandline of urban beaches in Mumbai, India. Environmental Monitoring and Assessment, 185: 7709–7719.
  • Keddy, P. A. 1984. Quantifying within-lake energy gradients in Gillfillan Lake, Nova Scotia. Canadian Journal of Botany, 62: 301 –309.
  • Khairunnisa, A. K., Fauziah, S. H., & Agamuthu, P. 2012. Marine debris composition and abundance : A case study of selected beaches in Port Dickson , Malaysia. Aquatic Ecosystem Health & Management, 15(3): 279–286.
  • Law, A. T., & Hii, Y. S. 2006. Status, impacts and mitigation of hydrocarbon pollution in the Malaysian seas. Aquatic Ecosystem Health & Management Society, 9(2): 147–158.
  • Ngah, M. S. Y. C., Hashim, M., Nayan, N., Said, Z. M., & Ibrahim, M. H. 2012. Marine pollution trend analysis of tourism beach in Peninsular Malaysia. World Applied Sciences Journal, 17(10): 1238–1245.
  • O’Brine, T., & Thompson, R. C. 2010. Degradation of plastic carrier bags in the marine environment. Marine Pollution Bulletin, 60(12): 2279–83.
  • Otley, H., & Ingham, R. 2003. Marine debris surveys at Volunteer Beach, Falkland Islands, during the summer of 2001/02. Marine Pollution Bulletin, 46(12): 1534–1539.
  • Ribic, C. A. 1998. Use of indicator items to monitor marine debris on a New Jersey beach from 1991 to 1996. Marine Pollution Bulletin, 36(I): 887–891. Ribic, C. A., Dixon, T. R., & Vining, I. (1992). Marine Debris Survey Manual. Washington, DC, NOAA Techincal Report NMFS 108.
  • Rodil, I. F., & Lastra, M. 2004. Environmental factors affecting benthic macrofauna along a gradient of intermediate sandy beaches in northern Spain. Estuarine, Coastal and Shelf Science, 61(1): 37– 44.
  • Rosevelt, C., Huertos, M. L., Garza, C., & Nevins, H. M. 2013. Marine debris in central California: Quantifying type and abundance of beach litter in Monterey Bay, CA. Marine Pollution Bulletin71(1-2): 299–306.
  • Ryan, P. G., & Moloney, C. L. 1993. Marine litter keeps increasing. Nature, 361(6407): 26. Silva-Cavalcanti, J. S., Barbosa de Araújo, M. C., & Ferreira da Costa, M. 2009. Plastic litter on an urban beach: A case study in Brazil. Waste Management and Research, 27: 93–97.
  • Somerville, S. E., Miller, K. L., & Mair, J. M. 2003. Assessment of the aesthetic quality of a selection of beaches in the Firth of Forth, Scotland. Marine Pollution Bulletin, 46(9): 1184–1190.
  • Sonu, C. J., McCloy, J. M., & Mcarthur, D. S. 1966. Longshore currents and nearshore topographies. Coastal Engineering Proceedings, 1(10): 524–549.
  • Taffs, K. H., & Cullen, M. C. 2005. The distribution and abundance of marine debris on isolated beaches of northern New South Wales, Australia. Journal of Environmental Management, 12(4): 244– 250.
  • Walker, T. R., Grant, J., & Archambault, M. 2006. Accumulation of marine debris on an intertidal beach in an urban park (Halifax Harbour, Nova Scotia). Water Quality Research Journal Canada41(3): 256–262.
  • Waters, S., Farrell-Poe, K., & Wagner, K. 2011. When it Rains it Runs Off : Runoff and Urbanized Areas in Arizona. The University of Arizona Cooperative Extension. Retrieved from cals.arizona.edu/pubs/water/az1542.pdf

Download Full Paper Here (Right-Click and Save As.. )

 

A REVIEW ON THE IMPACT OF ANTHROPOGENIC NOISE ON BIRDS

Emily A. Gilbert, Jephte Sompud*, Cynthia B. Sompud
Faculty of Science and Natural Resources,
Universiti Malaysia Sabah, 44800 Kota Kinabalu, Sabah
E-mail: jefty2003@gmail.com

ABSTRACT. This review addresses the impacts of the noise, the vital role of acoustic communication and the response of the bird in overcoming the increased anthropogenic noise. The rapid development human activities nowadays induce the noise that interrupt the acoustic communication of birds. Disturbance of the signals transmission causes detrimental impact on the birds as they are highly depending on the acoustic communication for their survival, territory defense and reproduction. Continuous exposure of the noise then results in the declination of species richness of which have been stated by several past studies. Although most of the studies stated that the negative impact as a consequences from the anthropogenic noise, however there is positive effect contributed by the noise of which are also recorded in other studies. Moreover, the impacts other variables such as vegetation density that cause major changes to the bird population as compared to noise have also been highlighted in several studies. This indicates that considering several influencing factor is important in measuring impact that leads to the changes that occur within the bird population. Thus, in depth studies on the impacts of anthropogenic noise towards the species of birds by taking into account other contributing variables is important to enable the noise management to be conducted effectively especially in development areas as way in conserving the biodiversity of the bird population.

KEYWORDS. Anthropogenic noise, avian community, bird’s population, acoustic communication

 

REFERENCES

  • Arroyo-Solis, A., Castilo, J. M., Lopez-Sanchez, J. L. & Slabbekoorn, H. 2013. Experimental evidence for an impact of anthropogenic noise on dawn chorus timing in urban birds. Journal of Avian Biology 43, pp. 1-9.
  • Barber, J. R., Crooks, K. R. & Fristrup, K. M. 2009. The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution 25, pp. 180-189.
  • Bayne, E. M., Habib, L. & Boutin, S. 2008. Impacts of chronic anthropogenic noise from energy-sector activity on abundance of songbirds in the boreal forest. Conservation Biology 22(5), pp. 1186- 1193.
  • Blickley, J. L. & Patricelli, G. L. 2010. Impacts of Anthropogenic Noise on Wildlife: Research Priorities for the Development of Standards and Mitigation. Journal of International Wildlife Law and Policy 13, pp. 274-292.
  • Blickley, J. L., Blackwood, D. & Patricelli, G. L. 2012 Experimental evidence for the effects of chronic anthropogenic noise on abundance of greater sage-grouse at leks. Conservation Biology 26(3), pp. 461-471.
  • Bottalico, P., Spoglianti, D., Bertetti, C. A. & Falossi, M. 2015. Effect of Noise Generated by Construction Sites on Birds. Conference Inter-noise 2015, pp. 1-7.
  • Brumm, H. 2004. The impact of environmental noise on song amplitude in a territorial bird. Journal of Animal Ecology 73, pp. 434-440.
  • Brumm, H. & Zollinger, S. A. 2011. The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour 148, pp. 1173-1198.
  • Cartwright, L. A., Taylor, D. R., Wilson, D. R. & Chow-Fraser, P. 2013. Urban noise affects song structure and daily patterns of song production in Red-winged Blackbirds (Agelaius phoeniceus). Urban Ecosyst, pp. 1-12.
  • Chan, A.A.Y-H., Stahlman, W. D., Garlick, D., Fast, C. D., Blumstein, D. T. & Blaisdell, A. P. 2010. Increased amplitude and duration of acoustic stimuli enhance distraction. Animal Behaviour in press, pp. 1-5.
  • Cardoso, G. C. & Atwell, J. W. 2011. On the relation between loudness and the increased song frequency of urban birds. Animal Behaviour 82, pp. 831-836.
  • Diaz, M., Parra, A. & Gallardo, C. 2011. Serins respond to anthropogenic noise by increasing vocal activity. Behavioral Ecology, pp. 332-336.
  • Dooling, R. J & Popper, A. N. 2007. The effects of highway noise on birds. Jones and Stokes Associate, California. Dutilleux, G. 2012. Anthropogenic outdoor sound and wildlife: it’s not just bioacoustics! Conference of Acoustics 2012, pp. 1-6.
  • Forman, R. T. T. & Alexander, L. E. 1998. Roads and their major ecological effects. Annual Review Ecology System 29, pp. 207–231. Francis C. D., Ortega, C. P. & Cruz, A. 2009. Noise pollution changes avian communities and species interactions. Current Biology 19, pp. 1415–1419. .
  • Francis C. D., Ortega, C. P. & Cruz, A. 2010. Vocal frequency change reflects different responses to anthropogenic noise in two suboscine tyrant flycatchers. Proceedings of the Royal Society B: Biological Sciences 278, pp. 2025-2031.
  • Francis, C. D., Ortega, C. P. & Cruz, A. 2011. Different behavioural responses to anthropogenic noise by two closely related passerine birds. Biology Letters, pp. 1-3
  • Francis, C. D. & Blickley, J. L. 2012. Introduction: research and perspectives on the study of anthropogenic noise and birds. Ornithological Monographs (74), pp. 1 -5.
  • González-Oreja, J. A., Fuente-Díaz-Ordaz, A. A., Hernández-Santín, L., Bonache-Regidor, C.& Buzo-Franco, D. 2012. Can human disturbance promote nestedness? Songbirdsand noise in urban parks as a case study. Landscape and Urban Planning In press, pp. 1-23.
  • Goodwin, S. E. & Shriver, W. G. 2010. Effects of traffic noise on occupancy patterns of forest birds. Conservation Biology 25(2), pp. 406-411.
  • Habib, L., Bayne, E. M. & Boutin, S. 2007. Chronic industrial noise affects pairing success and age structure of ovenbirds Seiurus aurocapilla. Journal of Applied Science 44, pp. 176-184.
  • Halfwerk, W., Bot, S., Buikx, J., Velde, M., Komdeur, J., Cate, C. & Slabbekoorn, H. 2011. Low-frequency songs lose their potency in noisy urban conditions. Proceedings of the National Academy of Sciences 108 (35), pp. 14549-14554.
  • Hana, D., Blouin-Demers, G., Wilson, D. R. & Mennill, D. J. 2011. Anthropogenic noise affects song structure in red-winged blackbirds (Agelaius phoeniceus). Journal of Experimental Biology 214, pp. 3549-3556.
  • Helldin, J. O. & Seiler, A. 2003. Effects of road on the abundance of birds in Swedish forest and farmland. Habitat Fragmentation due to Transportation Infrasturcture-IENE 2003, pp. 1-9.
  • Herrera-Montes, M. I & Aide, T. M. 2011. Impacts of traffic noise on anuran and bird communities. Urban Ecosyst 14, pp. 415-427.
  • Kight, C. R., Saha, M. S. & Swaddle, J. P. 2012. Anthropogenic noise is associated with reductions in the productivity of breeding Eastern Bluebirds (Sialia siali). Ecological Applications 22(7), pp. 1989-1996.
  • Legnage, T & Slater, P. J. B. 2002. The effects of rain on acoustic communication: towny owls have good reason for calling less in wet weather. The Royal Society 269, pp. 2121-2125.
  • Leonard, M. L. & Horn, A. G. 2012. Ambient noise increases missed detections in nestling birds. Biology Letters 8, pp. 530–532.
  • Luther, D. & Baptista, L. 2010. Urban noise and the cultural evolution of bird songs. Proceedings of Royal Society B: Biological Sciences 277, pp. 469-473.
  • McClure, C. J. W., Ware, H. E., Carlisle, J., Kaltenecker, G. & Barber, J. R. 2013. An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. Proceedings of The Royal Society 280, pp. 1-9.
  • Meillère, A., Brischoux, F. & Angelier F. 2015. Impact of chronic noise exposure on antipredator behavior: an experiment in breeding house sparrows. Behavioral Ecology, pp. 1-9. .
  • Miller, J. R., Dixon, M. D. & Turner, M. G. 2004. Response of avian communities in largeriver floodplains to environmental variation at multiple scales. Journal of Ecological Applications 14 (5), pp. 1394-1410.
  • Nemeth, E. & Brumm, H. 2010. Birds and Anthropogenic Noise: Are Urban Song Adaptive? The American Naturalist 176(4), pp. 465-475
  • Nemeth, E., & Pieretti, N., Geberzahn, N., Partecke, J., Miranda, A. C. and Brumm, H. 2013.Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities. Proceedings of The Royal Society 280, pp. 1-7.
  • Nordt, A. & Klenke, R. 2013. Sleepless in town – drivers of the temporal shift in dawn song in urban european blackbirds. PLoS ONE 8(8), pp. 1-10.
  • Parris, K. M. & Schneider, A. 2008. Impacts of traffic noise and traffic volume on birds of roadside habitats. Ecology and Society 14(1), pp. 1 -23.
  • Patricelli, G. L. & Blickley, J. L. 2006. Avian communication in urban noise: causes and consequences of vocal adjustment. Auk 123(3), pp. 639-649.
  • Peh, K. S. –H. Jong, J. D., Sodhi, N. S., Lim, S. L. –H. & Yap. C. A. –M. 2005. Lowland rainforest avifauna and human disturbance: persistence of primary forest birds in selectively logged forests and mixed-rural habitats of southern Peninsular Malaysia. Journal of Biological Conservation 123, pp. 489-505.
  • Polak, M. 2014. Relationship between traffic noise levels and song perch height in a common passerine bird. Transportation Research Part D Transport and Environment 30, pp. 72-75.
  • Potvin, D. A., Mulder, R. A. & Parris, K. M. 2014. Silvereyes decrease acoustic frequency but increase efficacy of alarm calls in urban noise. Animal Behaviour 98, pp. 27-33.
  • Rabin, L. A., McCowan, B., Hooper, S. L. & Owings, D. H. 2003. Anthropogenic noise and its effect of animal communication: an interference between comparative psychology and conservation biology. International Journal of Comparative Psychology 16, pp. 172-196.
  • Riebel, K. 2003. The ‘mute’ sex revisited: vocal production and perception learning in female songbirds. Advances in the Study of Behaviour 33, pp. 49-85.
  • Reijnen, R., Foppen, R. & Meeuwsen, H. 1996. The effects of traffic on the density of breeding birds in dutch agricultural grasslands. Biological Conservation 75, pp.255-260.
  • Santana, O. 2011. The effect of anthropogenic noise on veery singing behaviour. Carry Institute of Ecosystem Studies, pp. 1-11.
  • Schroeder, J., Nakagawa, S., Cleasby, I. R. & Burke, T. 2012. Passerine birds breeding under chronic noise experience reduced fitness. PLOS ONE 7(6), pp. 1-9.
  • Slabbekoorn, H. & Ripmeester, E. A. 2007. Birdsong and anthropogenic noise: implications and applications for conservation. Molecular Ecology, pp. 1-12.
  • Slabbekoorn, H. 2012. Measuring Behavioural Changes to Assess Anthropogenic Noise Impact on Singing Birds. Proceedings of Measuring Behavior 2012, pp. 158-162.
  • Sodhi, N. S., Lian, P. K., Prawiradilaga, D. M., Darjono., Tinulele, I., Putra, D. D. & Han, T. T. 2005. Land use and conservation value for forest birds in Central Sulawesi (Indonesia). Journal of Biological Conservation 122, pp. 547-558.
  • Summers, P. D., Cunnington, G. M. & Fahrig, L. 2011. Are the negative effects of roads on breeding birds caused by traffic noise? Journal of Applied Ecology 48, pp. 1527– 1534
  • Swaddle, J. P. & Page, L. C. 2007. High levels of environmental noise erode pair preferences in zebra finches: implications for noise pollution. Animal Behaviour 74, pp. 363-368.
  • Verzijden, M. N., Ripmeester, E. A. P., Ohms, V. R., Snelderwaard, P. & Slabbekoorn, H. 2010.Immediate spectral flexibility in singing chiffchaffs during experimental exposure to highway noise. The Journal of Experimental Biology 213, pp. 2575- 2581.
  • Wiacek, J., Polak, M., Filipiuk, M., Kucharczyk, M. & Bohatkiewicz, J. 2015. Do birds avoid railroads as has been found for roads? Environmental Management, pp. 1-10.

Download Full Paper Here (Right-Click and Save As.. )

BIRD POPULATION IN TWO YEARS OLD Acacia mangium PLANTATION, SABAH FOREST INDUSTRIES SDN BHD

Kee Sze Lue, Jephte Sompud*, Lee Woon Jah, Cynthia Boon Sompud, Emily Gilbert
Faculty of Science and Natural Resources,
Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah
E-mail: jefty2003@gmail.com

ABSTRACT. Large areas of tropical forest worldwide have been converted rapidly into forest plantation. Plantation can play an important role in restoring productivity, ecosystem stability, and biological diversity to degraded tropical lands. However, the conversion of forest areas to plantation rapidly resulting birds to lose their natural habitat. Therefore, Acacia mangium plantations have the potential as the refuges for birds. As such, this study was conducted to investigate the bird population in 2-year Acacia mangium plantation, Sabah Forest Industries (SFI), Sabah to determine the bird population density and diversity of 2 year mangium plantation in SFI. There is no published information of the detailed status of bird in SFI yet. Bird survey was done by using point count method. The bird population density was analyzed by using distance 6.2 and bird diversity was calculated by using Shannon-Wiener diversity index. A total of 343 birds belong to 53 species from 21 families were detected. The bird population in 2-year mangium plantation was 17.71 individual per hectare and Shannon-Wiener diversity index for bird diversity was 3.24. This study shows that the bird population density and diversity in SFI were higher as compared to other past studies in Borneo plantation area.

KEYWORDS. Forest plantation, population density, bird diversity, Acacia mangium,  Sabah

 

REFERENCES

  • Bibi, F. & Ali, Z. 2013. Measurement of diversity indices of Avian communities at Taunsa Barrage wildlife sanctuary, Pakistan. The Journal of Animal & Plant, 23 (2): 469-474.
  • Buckland, S. T., Russell, R. E., Dickson, B. G., Saab, V. A., Gorman, D. N. & Block, W. M. 2009. Analyzing designed experiments in distance sampling. Journal of Agriculture Biological, and Environmental Statistic, 14 (4): 432-442.
  • Fujita, M. S., Prawiradilaga, D. M. & Yoshimura, T. 2014. Roles of fragmented and logged forests for bird communities in industrial Acacia mangium plantation in Indonesia. Ecological Research, 29 (4): 741-755.
  • Gregory, R. D and Strien, A. V. 2010. Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithological Science, 9: 3-22.
  • Lindell, C. A., Chomentowski, W. H. & Zook, J.R. 2003. Characteristic of bird species using forest and agriculture land covers in sounthern Costa Rica. Journal of Biodiversity and Conservation, 13: 2419-2441.
  • Mallari, N. A. D., Collar, N. J., Lee, D. C., McGowan, P. J. K., Wilkinson, R. & Marsden, S. J. 2011. Population densities of understorey birds across a habitat gradient in Palawan, Philippines: implications for conservation. Fauna & Flora International, Oryx, 45 (2): 234-242.
  • Kee Sze Lue, Jephte Sompud, Lee Woon Jah, Cynthia Boon Sompud, Emily Gilbert Mojiol, A. R., Affendy, H., Maluda, J. & Immit, S. 2008. Rapid assesment on the abundance of bird species utilising the Kinabalu Wetland Centre mangroves. Journal of Tropical  Biology and Conservation, 4 (1): 99-107.
  • Morelli, F. 2013. Relative importance of marginal vegetation (shrubs, hedgerows, isolated trees) surrogate of HNV farmland for bird species distribution Central Italy. Ecological Engineering, 57: 261 -266.
  • Parrotta, J. A. 1992. The role of plantation forests in rehabilitating degraded tropical ecosystems. Agriculture, Ecosystems & Environment, 41 (2): 115-133.
  • Pettingill, O. S., Jr. 1985. Ornithology in Laboratory and Field. Fifth Edition. Academic Press Inc. Ltd., London. Phillipps, Q. & Phillipps, K. 2014. Phillipps’ Field Guide To Birds of Borneo. John Beaufoy Publishing, United Kingdom.
  • Ralph, C. J., Geupel, G. R., Pyle, P., Martin, T. E. & DeSante, D. F. 1993. Handbook of field method for monitoring land birds. General Technical Report PSW-GTR-144. Pacific Southwest Research Station, Forest Service, US Department of Agriculture, Albany, California.
  • Rajpar, M. N. & Zakaria, M. 2010. Density and diversity of water birds and terrestrial birds at Paya Indah Wetland Reserve, Selangor Peninsular Malaysia. Journal of Biological Sciences, 10: 658-666.
  • SFI. 2015. SFI Mendulong Map. Sipitang, Sabah. Sheldon, F. H., Styring, A. R. & Hosner, P. A. 2010. Bird species richness in a Bornean exotic tree plantation: A long-term perspective. Biological Conservation, 143: 399- 407.
  • Sheldon, F. H. & Strying, A. R. 2011. Bird diversity differs between industrial tree plantations on Borneo: Implications for conservation planning. The Raffles Bulletin of Zoology, 59 (2): 295-309.
  • Styring, A. R., Ragai, R., Unggang, J., Stuebing, R., Hosner, P. A. & Sheldon, F. H. 2011. Bird community assembly in Bornean Industrial Tree Plantations: Effects of forest age and structure. Forest Ecology and Management, 261: 531-544.
  • Sodhi, N. S., Soh, M. C., Prawiradilaga, D. M., Darjono, D. M. & Brook, B. W. 2005. Persistance of Lowland Rainforest Birds in a Recently Logged Area in Central Java. Bird Conservation International, 15 (2): 173-191.
  • Wilsey, B. & Stirling. 2007. Species richness and evenness respond in a different manner to propagule density in developing prairie microcosm communities. Journal of Plant Ecology, 190: 259-273.
  • Wee, Y.C. 2009. Observation on the behavior of the yellow-vented bulbul, Pycnonotus goiavier (Scopoli) in two instances of failed nesting. Nature in Singapore, 2: 347-352.
  • Wells, D. R., 2007. The Birds of the Thai-Malay Peninsula. Volume II. Passerines.
  • Christopher Helm, London. 800 pp. Wong, T. S. 2012. A Naturalist’s Guide to the Bird of Borneo. John Beaufoy Publishing, United Kingdom.
  • Zakaria, M., Puan, C. L., Yusuf, M. E. 2005. Comparison of Species Composition in Three Forest Types: Toward Using Bird as Indicator of Forest Ecosystem Health. Journal of Biological Sciences, 5 (6): 734-737.
  • Zakaria, M., Rajpar, M. N. & Sajap, S. A. 2009. Species diversity and feeding guilds of birds in Paya Indah Wetland Reserve, Peninsular Malaysia. International Journal of Zoological Research, 5 (3): 86-100.
  • Zakaria, M. & Rajpar, M. N. 2010. Bird species composition and feeding guilds based on point count and mist nesting method at The Paya Indah Wetland Reserve, Penisular Malaysia. Tropical Life Sciences Research, 21 (2): 7-32.
  • Zakaria, M. & Rajpar, M. N. 2013. Density and diversity of water birds and terrestrial birds in man-made marsh, Malaysia. Sains Malaysiana, 42 (10): 1483-1492.

Download Full Paper Here (Right-Click and Save As.. )

GEOTOURISM POTENTIAL AT SILAM COAST CONSERVATION AREA (SCCA) SILAM, SABAH

Zulherry Isnain1, *Junaidi Asis1, Hazerina Pungut2, Sanudin Tahir2, Baba Musta1 & Hardianshah Saleh2
*junaidi@ums.edu.my
1Small Island Research Centre (SRIC)
Faculty of Science and Natural Resources (FSSA)
Universiti Malaysia Sabah (UMS)

2Geology Programme
Faculty of Science and Natural Resources (FSSA)
Universiti Malaysia Sabah (UMS)

ABSTRACT A research has been conducted at Silam Coast Conservation Area (SCCA) to evaluate the geotourism potential of the geological heritage resources. The study area is located at Silam, Lahad Datu, in the eastern part of Sabah. The SCCA and surrounding area were made up of igneous and sedimentary rocks of ultramafic, gabbro, amphibolite, basaltic dykes, plagiogranites and basaltic rocks capped by red radiolarian chert. It is also known as the Darvel Bay Ophiolite Complex which represents the ophiolitic sequence of oceanic crust that formed during Jurassic to Cretaceous around 150-80 million years ago.  In SCCA area, only pillow basalt, lava basalt, chert and minor occurrence of basalt dyke were present. Mid-Miocene tectonic event deformed and uplifted the rock unit. SCCA is a coastal area which also covers few small islands namely Tabun Island and Saranga Island to the northeast of the conservation area in Darvel Bay. The geomorphology and geologic features contribute to the aesthetic values of the area that enhances the scientific values. Two potential geosites have been identified which are Tabun-Saranga islands and Pandanus-Ara beaches that hold unique features of remnant cliff, wave-cut cliff, faults, caves, stacks, tafoni, headland, pocket beach, colluvial beach deposit and remnant of raised coral colonies. Development of this geosites could lead to conservation for sustaining the geological heritage resources as well as contributing to the state’s economy and tourism industry.

Keywords: Geotourism, Silam Coast Conservation Area, SCCA, Tabun,Island, Saranga Island

 

REFERENCES

  • Basir Jasin. 1991. The Sabah Complex – a lithodemic unit (a new name for the Chert Spilite Formation and its ultramafic association). Warta Geologi 17(6): 253-259.
  • Basir Jasin. 2000. Geological significance of radiolarians chert in Sabah. Bulletin Geological Society of Malaysia 44: 35-43.
  • Fitch, F.H., 1955. The Geology and Mineral Resources of the Segama Valley and Darvel Bay Area, British Borneo Geological Survey of Malaysia. Memoir 4.
  • Hutchison, C.S. 2005. Geology of North-West Borneo (Sarawak, Brunei and Sabah). Amsterdam: Elsevier. Hutchison, C.S. 1997. Tectonic framework of the Neogene basins of Sabah. Abstract Geological Society of Malaysia Petroleum Geology Conference 1997.
  • Ibrahim Komoo, Tjia, H.D. & Mohd Shafeea Leman. 2001. Warisan Geologi Malaysia Edisi 4. LESTARI, Universiti Kebangsaan Malaysia. Ampang Press Sdn. Bhd., Kuala Lumpur.
  • Junaidi Asis & Basir Jasin. 2013. Aptian to Turonian radiolarians from chert blocks in the Kuamut Melange, Sabah, Malaysia. Sains Malaysiana 42 (5): 561-570.
  • Junaidi Asis & Basir Jasin. 2012. Aptian to Turonian Radiolaria from the Darvel Bay Ophiolite Complex, Kunak, Sabah. Bulletin Geological Society of Malaysia 58: 89- 96.
  • Zulherry Isnain, Junaidi Asis, Hazerina Pungut, Sanudin Tahir, Baba Musta and Hardianshah Saleh Junaidi Asis & Basir Jasin. 2010. Radiolaria Kapur dalam Kompleks Ofiolit Teluk Darvel di Sungai Sipit Lahundai, Kunak, Sabah. Borneo Science Journal 27: 1 -14.
  • Kerr, P.F., 1977. Optical Mineralogy. McGraw-Hill Book Company. New York. Kirk, H.J.C. 1962. The geology and mineral resources of the Semporna Peninsula, North Borneo. British Borneo Geological Survey of Malaysia, Memoir 14.
  • Leong K.M., 1974. The geology and mineral resources of the Darvel Bay and Upper Segama area, Sabah. Geological Survey of Malaysia, Memoir, 4: 354p.
  • Leong, K.M. 1977. New age from radiolarian cherts of the Chert-Spilite Formation, Sabah. Bulletin Geological Society of Malaysia 8: 109-111.
  • Leong, K.M. 1998. Sabah Crystalline Basement: Spurious radiometric age? Continental?.Warta Geologi, 24: 5-8.
  • Shariff A.K. Omang. 1996a. Sub-ophiolite metamorphic rocks in the Tungku area, Lahad Datu, Eastern Sabah, Malaysia: origin and tectonic significance. Bulletin of the Geological Society of Malaysia 39: 51-64.
  • Shariff A.K. Omang. 1996b. Petrology and geochemistry of the volcanic roks associated with the Darvel Bay Ophiolite Complex, Lahad Datu, eastern Sabah, Malaysia. Bulletin of the Geological Society of Malaysia 39: 51-64.
  • Shariff Abd. Kadir S. Omang, Wan Azmona Wan Mohamed, Sanudin Hj. Tahir & Sahibin A. Rahim, 1992. The Darvel bay Ophiolite Complex, SE Sabah, Malaysia – preliminary interpretations. Warta Geologi 18(3): 81-88.

Download Full Paper Here (Right-Click and Save As.. )

Volume 37, Issue 2 (Full)

Fuzzy Interpolation Rational Bicubic Bezier Surface
- Rozaimi Zakaria, Abd Fatah Wahab, R.U. Gobithaasan, Isfarita Ismail

Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey
- Ahmad Fauzi Nordin, Hassan Jamil, Mohd Noor Isa, Azhari Mohamed, Sanudin Hj. Tahir, Baba Musta, Rene Forsberg, Arne Olesen, Emil Nielsen, Abd Majid A Kadir, Ahmad Fahmi Abd Majid, Kamaludin Talib, Saiful Aman Sulaiman

Sorption and Characterization Studies of Activated Carbon Prepared from Polyethylene Terephthalate (PET)
- Collin G. Joseph, S.M. Anisuzzaman, Pak Yan Moh, E-W Amy Lim

Fabrication and Characterization of Cu2O/ZnO Thin Films for pn Heterojunction Devices
- Azmizam Manie@mani, Saafie Salleh, Fuei Pien Chee, Afisah Alias, Saturi Baco

Mercerized Natural Cellulose Based-Solid Polymer Electrolyte
-Jahimin Asik, Fauziah Abdul Aziz, Razali Idris

MERCERIZED NATURAL CELLULOSE BASED-SOLID POLYMER ELECTROLYTE

Jahimin Asik1, Fauziah Abdul Aziz2 and Razali Idris3
1School of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah.
Email: jthan@ums.edu.my
2Universiti Pertahanan Malaysia
Email: afuziah@upnm.edu.my
3MARA University of Technology Perlis, Malaysia, 02600 Arau, Perlis

ABSTRACT. Cellulosic materials derived from three different types of local wood samples (sawmill woods sawdust, Acacia mangium and belian (Euxideroxilon zwagery) were extracted at atmospheric pressure using organosolv method. In an initial stage, the wood samples were delignified using peroxyacetic acid pulping to remove lignin. Then the pulp was bleached in 0.01 M solution of sodium hydroxide (NaOH) with addition of 4% hydrogen peroxide of absolute dry pulp (ODP). Conversion to alpha-cellulose or mercerized cellulose was achieved by soaking bleached cellulosic materials in 17.5% solution of NaOH for 15 minutes at 25oC. The mercerized cellulose was thoroughly washed with large amount of distilled water until pH of the filtrate reached to natural, then vacuum dried at 60oC. From Scanning electron microscope (SEM) all mercerized woods cellulose were differ in microfibril size with high irregularity observed in sawmill sawdust. Formation of cellulose II was confirmed with X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (Ft-IR) analysis. Preparation of solid polymer electrolyte (SPE) membrane was obtained by dissolving dry mercerized cellulose in molten 1 butyl-3-methylimidazolium chloride ([bmim]Cl) in the presence of lithium perchlorate (LiClO4) to produce a transparent solid gel film. All SPE membranes exhibit conductivity in the range of 3.6 x 10-6 to 5.7 x 10-5 Scm-1 at room temperature. It was also observed that the conductivity of the SPE is affected by the size of cellulose microfibril and type of extraction. It was then further characterized with SEM, XRD, FTIR and TGA.

KEYWORDS: Wood, Organosolv, Cellulose, mercerized, SPE, conductivity

REFFERENCES

  • ANON.; 1983c. TAPPI Testing Procedures (TAPPI T203 om-83). USA.
  • De Souza, I.J.; Bouchard, J.; Methot, M.; Berry, R.; Argyropoulos, D.S.; 2002. J Pulp Paper Sci 28(5):167–70.
  • Esat Gϋmϋskaya E.; Usta M.; and Kirci H.; 2003. Polymer Degradation and Stability 81: 559–564
  • Gemci, R.; 2010. Scientific Research and Essays Vol. 5(6), pp. 560-571
  • Goring, D. A. I.; Timell, T. E.; 1962. Tappi 45:454-460
  • Howlett, P.C.; MacFarlane, D.R.; Hollenkamp, A.F.; 2004. Electrochem Solid-State Lett 7:A97–A101
  • Kadokawa, J.;* Murakami, M.; and Kaneko, Y., 2008. Carbohydrate Research 343 769–772
  • Kim, Y.J .; Matsuzawa, Y.; Ozaki, S.; Park, K.C.; Kim. C.; Endo. M.; Yoshida. H.; Masuda, G.; Sato, T.; Dresselhaus, M.S.; 2005 J Electrochem Soc 152:A710–A715.
  • Klemm, D.; Philip, B.; Heinze, T.; Heinze, U.; and Wagenknect, W.; 1998. Comprehensive Cellulose Chemistry, Vol. 1, Wiley.VCH, Germany.
  • Krässig, H.A.; 1993. Gordon and Breach Science Publishers, Yverdon, Switzerland.
  • Kondo, T.; Sawatari, C.; 1996. Polymer, 37, 393–399.
  • Mahadeva, S.K.; Yi, C.; and Kim, J.;* 2009. Macromolecular Research, Vol. 17, No. 2, pp 116-120
  • Marco-A. De Paoli, M.A.;* Gazottib, W.A., 2002. J. Braz. Chem. Soc., Vol. 13, No. 4, 410-424,
  • Meyer, W. H.; 1998. Adv. Mater., 10, 440.
  • Nelson, M. L.; O Connor, T.; 1964. J. Appl. Polym. Sci. 8, 1311–1324.
  • Nicoll, W.D.; Cox, N.L.; Conaway, R.F.; 1954. In: Ott, E., Spurlin, H.M., and Grafflin, M.W.,(eds) Cellulose and Cellulose Derivatives. Part II. Interscience Publisher, New York, pp.825-871.
  • Nishino, T.; Matsuda, I.; Hirao, K.; 2004. Macromolecules, 37, 7683–7687.Oh, S. Y.; Yoo, D. I.; and Seo, G.; 2005. Carbohyd. Res., 340, 417
  • Schwanninger, M.; Rodrigues, J. C.; Pereira, H. & Hinterstoisser, B.; 2004. Vib. Spectrosc., 36,23–40.
  • Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D.; 2002. J Am Chem Soc 124:4974–4975.
  • Welton, T.; 1999. Chem Rev 99:2071–2083.

Download Paper Now (Right-Click and Save As..)

SORPTION AND CHARACTERIZATION STUDIES OF ACTIVATED CARBON PREPARED FROM POLYETHYLENE TEREPHTHALATE (PET)

Collin G. Josepha*, S.M. Anisuzzamanb, Pak Yan Moha, E-W Amy Lima
aWater Research Unit, Faculty of Science and Natural Resources,
Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia.
bChemical Engineering Program, Faculty of Engineering,
University Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia.
*Corresponding author. Tel.: +6 088 320000 ext. 2117; Fax: + 6 088 435324; e-mail: collin@ums.edu.my

ABSTRACT. A series of activated carbons (ACs) were prepared from cut pieces of polyethylene terephthalate (PET) via semi-carbonization followed by physical activation using a two-stage self-generated atmosphere method. The best AC was obtained by using a temperature of 700°C and 5 hours of carbonization period. The percentage yield decreased with increasing activation temperature, whereas the activation time did not have a significant effect on the yield. With a moisture content and ash content of less than 10% and 1% respectively, this material was suitable for AC production. The BET surface area was measured at 515.41 m2/g, with a Type I isotherm and an H4-type adsorption hysteresis loop concurring that the AC was a microporous solid with chemisorption properties.

KEYWORDS. Activated carbon (AC), 2,5-dichlorophenol (2,5- DCP), polyethylene terephthalate (PET), physical activation

REFERENCES:

  • Abiko, H., Furuse, M. & Takano, T. 2010. Reduction of adsorption capacity of coconut shell activated carbon for organic vapors due to moisture contents. Industrial Health 48(4): 427-437.
  • Abuzaid, S.N. & Nakhla, G.F. 1996. Effect of solution pH on the kinetics of phenolics uptake on granular activated carbon. Journal of Hazardous Materials 49(2): 217-230.
  • Ahmad, A.L., Loh, M.M. & Aziz, J.A. 2007. Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption. Dyes and Pigments 75 (2): 263-272.
  • Beswick, R.H & Dunn, D.J. 2002. Plastic in Packaging – Western Europe and North America. United Kingdom: Smithers Rapra Technology, 14.
  • Bouchelta, C., Medjram, M.S., Bertrand, O. & Bellat J.P. 2008. Preparation and characterization of activated carbon from date stones by physical activation with steam. Journal of analytical and applied pyrolysis 82 (1): 70-77.
  • Cao, Q., Xie, K.C., Lv Y.K & Bao W.R. 2006. Process effects on activated carbon with large specific surface area from corn cob. Bioresource Technology 97(1): 110-115.
  • Esfandiari, A., Kaghazchi, T. & Soleimani, M. 2012. Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. Journal of the Taiwan Institute of Chemical Engineers 43(4): 631-637.
  • Husseien, M., Amer, A.A. & El-Maghraby, A. 2007. Utilization of barley straw as a source of a activated carbon for removal of methylene blue from aqueous solution. Journal of Applied Sciences Research 3:1352-1358.
  • Jagtoyen, M., Thwaites, M.J & Stencel, B. 1992. Adsorbent carbon synthesis from coals by phosphoric acid activation. Carbon 30(7): 1089-1096.
  • Joseph, C. G., Li Puma, G. & Bono, A. 2011. Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2,4,6-trichlorophenol. Desalination 276(1-3): 303-309.
  • Karthikeyan, S., Sivakumar, P. & Palanisamy, P.N. 2008. Novel activated carbons from agricultural wastes and their characterization. Journal of Chemistry 5(2): 409-426.
  • László, K., Bóta, A. & Nagy, L.G. 1999. Porous carbon from polymer waste materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 151(1): 311-320.
  • László, K. & Szùcs, A. 2001. Surface characterization of polyethyleneterephthalate (PET) based activated carbon and the effect of pH on its adsorption capacity from aqueous phenol and 2,3, 4-trichlorophenol solutions. Carbon 39(13): 1945-1953.
  • Lua, A.C. & Yang, T. 2004. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. Journal Colloid and Interface Science 274 (2): 594-601.
  • Mestre, A.S., Pires, J., Nogueira, J.M., Parra, J.B., Carvalho, A.P. & Ania, C.O. 2009. Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure. Bioresource Technology 100 (5): 1720-1726.
  • Nakagawa, K., Mukai, S.R. & Suzuki, T. 2003. Gas adsorption on activated carbons from PET mixtures with a metal salt. Carbon 41(4): 823-831.
  • Raveendran, K., Ganes, A. & Khilart, K.C. 1995. Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12): 1812-1822.
    SIRIM Method. 1984. Specification of powdered activated carbons. Standard and Industrial Research Institute of Malaysia, 873.
  • Sudaryanto, Y., Hartono, S.B. & Irawaty, W. 2006. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresource Technology 97(5): 734-739.
  • Sun, K. & Jian, C.J. 2010. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass and Bioenergy 34(4): 539-544.
  • Tatiya, R.R. 2010. Elements of Industrial Hazards- Health, Safety, Environment and Loss Prevention. CRC Press,105-120.
  • Tsai, W.T., Chang, C.Y. & Wang, S.Y. 2001. Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2. Bioresource Technology 78 (2): 203-20 .
  • Weber, W.J. 1972. Physicochemical processes for water quality control. United States: John Wiley and Sons, 236.
  • Yang, T. & Lua, A.C. 2003. Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. Journal of Colloid and Interface Science 267(2): 408-417.

Download Full Paper Here (Right-Click and Save As.. )

GEOLOGICAL MAPPING OF SABAH, MALAYSIA, USING AIRBORNE GRAVITY SURVEY

1Ahmad Fauzi Nordin, 1Hassan Jamil, 1Mohd Noor Isa, 1Azhari Mohamed
2Sanudin Hj. Tahir, 2Baba Musta,
3Rene Forsberg, 3Arne Olesen, 3Emil Nielsen
4Abd Majid A Kadir, 4Ahmad Fahmi Abd Majid
5Kamaludin Talib, 5Saiful Aman Sulaiman
1Jabatan Ukur dan Pemetaan Malaysia, Jalan Semarak, 50578 Kuala Lumpur
2Faculty of Science and Natural Resources,Universiti Malaysia Sabah, 88400
Kota Kinabalu,Sabah
3National Space Institute, Denmark Technical University, Copenhagen, Denmark
4Info-Geomatik, 81300 Skudai, Johor
5Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA
40450 Shah Alam, Selangor

ABSTRACT. Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne gravity data were 5-6 km. The airborne gravity survey database for land and marine areas has been compiled using ArcGIS geodatabase format in order to produce the update geological map of Sabah.

KEYWORDS. Airborne gravimetry, gravity field, ArcGIS, geological mapping,

REFERENCES:

  • Alberts, B.A., Ditmar, P., & Klees, R., 2007. A new methodology to process airborne gravimetry data: advances and problems. In: Tregoning P and Rizos C, (eds.). Proceedings of Dynamic Planet -Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, volume 130 of IAG Symposia, pages 251–258, Cairns, Australia.
  • Anderson, O., 2010. Global Gravity Field Model, Technical University of Denmark. www.space.dtu.dk
  • Dwayne, B., 1986. Gravity Modeling of a Mafic-Ultramafic Association, Darvel Bay, Sabah, Northern Borneo. Department of Geology, Dalhousie University, Honours Bachelor of Science Degree Thesis (Unpublished).
  • DTU, 2014. GRAVSOFT Package, National Space Institute (DTU-Space), Denmark Technical University, Copenhagen, Denmark.
  • Forsberg, R., Olesen, A.V., & Keller, K., 1999. Airborne gravity survey of the North Greenland continental shelf. Technical Report 10, National Survey and Cadastre (KMS), Copenhagen, Denmark.
  • Forsberg, R., 2002. Downward continuation of airborne gravity data. The 3rd meeting of the International Gravity and Geoid Commission ’Gravity and Geoid 2002’, Thessaloniki, Greece.
  • Forsberg, R., 2010. Airborne Gravity Field Determination. Sciences of Geodesy I, Springer.
  • Hofmann, W & Moritz, H., 2006. Physical Geodesy, Springer.
  • Hutchinson, C.S., 1992. The Southeast Sulu Sea, a Neogene marginal basin with outcropping extensions in Sabah, Geol. Soc. Malaysia, Bulletin 32, November 1992; pp. 89 -108
  • JUPEM, 2003. Airborne gravity survey and geoid determination project for Peninsular Malaysia, Sabah and Sarawak, Contract JUPEM-T04/2002, Final Report, Seksyen Geodesi, Bahagian Pemetaan.
  • JUPEM, 2014. The Conduct of airborne gravity and magnetic survey over selected area near the international maritime boundary offshore of Sabah and Sarawak, Phase I (2014), Contract JUPEM-T03/2013, Final Report, Bahagian Ukur Geodetik.
  • JUPEM, 2015. The Conduct of airborne gravity and magnetic survey over selected area near the international maritime boundary offshore of Sabah and Sarawak, Phase II (2015), Contract JUPEM-T-24/204, Final Report, Bahagian Ukur Geodetik.
  • Olesen, A.V., 2003. Improved airborne scalar vector gravimetry regional gravity field mapping and geoid determination. Technical report, National Survey and Cadastre (KMS), Copenhagen, Denmark.
  • Olesen, A.V. & Forsberg, R., 2007. Airborne scalar gravimetry for regional gravity field mapping and geoid determination. In: Harita Dergisi, Proceedings of the 1st International Symposium of the International Gravity Field Service ’Gravity field of the Earth’, pages 277–282, Istanbul, Turkey.
  • Sanudin Hj. Tahir & Baba Musta., 2007. Pengenalan kepada Stratigrafi (Introduction to Stratighraphy). Universiti Malaysia Sabah, Kota Kinabalu.
  • Sanudin, T., Baba Musta, & Ismail, A.R., 2010. Geological heritage features of Tawau volcanic sequence, Sabah. Bulletin of the Geological Society of Malaysia 56, pp. 79 – 85
  • Yin, E. H., 1985. Geological Map of Sabah, East Malaysia. 3rd Edition, Geological Suryey of Malaysia.

Download Full Paper Here (Right-Click and Save As.. )

FUZZY INTERPOLATION RATIONAL BICUBIC BEZIER SURFACE

Rozaimi1* Zakaria, Abd Fatah2 Wahab, R.U. Gobithaasan2, Isfarita3 Ismail
1Faculty Science and Natural Resources,
Universiti Malaysia Sabah (UMS),
Kota Kinabalu, Sabah.
2School of Informatics and Applie d Mathematics,
3Institute of Oceanography and Environment,
Universiti Malaysia Terengganu, Malaysia.
Corresponding author’s email: rozaimi@ums.edu.my (Tel: 088-320000 ext: 5628,Fax: 088-320223)

ABSTRACT. This paper introduces fuzzy interpolation rational bicubic Bezier surface (later known as FIRBBS) which can be used to model the fuzzy data forms after defining uncertainty data by using fuzzy set theory. The construction of FIRBBS is based on the definition of fuzzy number concept since we dealing with the real uncertainty  data form and interpolation rational bicubic Bezier surface model. Then, in order to obtain the crisp fuzzy solution, we applied the alpha-cut operation of triangular fuzzy number to reduce the fuzzy interval among those fuzzy data points(FDPs). After that, we applied defuzzification method to give us the final solution of getting single surface which also knows as crisp fuzzy solution surface. The practical example also is given which represented by figures for each processes. This practical example take the fuzzy data of lakebed modeling based on uncertainty at z-axis(depth).

KEYWORD. Fuzzy number, rational bicubic Bezier surface, interpolation, alpha-cut, defuzzification.

REFERENCES:

  • Farin, G. 1999. NURBS for Curve and Surface Design: from Projective Geometry to Practical Use. 2nd ed: AK Peters, Ltd.
  • Farin, G. 2002. Curves and Surfaces for CAGD: A Practical Guide. 5th ed. USA: Academic Press.
  • Hussain, M. Z. & Hussain, M. 2006a. Visualization of Data Subject to Positive Constraints. Journal of Information and Computing Sciene 1-2 (27):397-410.
  • Hussain, M. Z. & Hussain, M. 2006b. Visualization of Surface Data Using Rational Bicubic Spline. Journal of Mathematics 38:85-100.
  • Hussain, M. Z. & Hussain, M. 2007. Visualization of 3D data preserving convexity. Journal of Applied Mathematics & Computing 23 (1-2):397-410.
  • Klir, G. J. & B.Yuan. 1995. Fuzzy Sets and Fuzzy Logic: Theory and Application. New York: Prentice Hall.
  • Klir, G. J., Clair, U. S. & Yuan, B. 1997. Fuzzy Set Theory: Foundation and Application. New Jersey: Prentice Hall.
  • Sarfraz, M., Habib, Z. & Hussain, M. 1998. Piecewise interpolation for designing of parametric curves. Paper read at Proceedings of an IEEE Conference on Information Visualization, 29-31 July 1998, at London.
  • Wahab, A. F. 2008. Pemodelan Geometri Menggunakan Teori Set Kabur, School of Mathematics, Universiti Sains Malaysia.
  • Wahab, A. F. & Zakaria, R. 2015. Fuzzy tuning B-spline curve. AIP Conference Proceedings, 1691(040026).
  • Zadeh, L. 1965. Fuzzy Sets. Information and Control 8:338-353.
  • Zakaria, R. & Wahab, A. F. 2013. Fuzzy Set Theory in Modeling Uncertainty Data via Interpolation Rational Bezier Surface Function. Applied Mathematical Sciences, 7(45), 2229-2238.
  • Zakaria, R. & Wahab, A. F. 2014. Pemodelan Titik Data Kabur Teritlak. Sains Malaysiana 43 (5):799-805.
  • Zakaria, R., Wahab, A. F. & Gobithaasan, R. U. 2016. The Series of Fuzzified Fuzzy Bezier Curve. Jurnal Teknologi, 78(2-2), 103-107.
  • Zakaria, R., Wahab, A. F. & Gobithaasan, R. U. 2014. Fuzzy B-Spline Surface Modeling. Journal of Applied Mathematics 2013 (Article ID 285045):8 Pages.
  • Zimmermann, H.-J. 1985. Fuzzy Set Theory and Its Applications. USA: Kluwer Academic

 

Download Full Paper Here (Right-Click and Save As.. )

FABRICATION AND CHARACTERIZATION OF Cu2O/ZnO THIN FILMS FOR pn HETEROJUNCTION DEVICES

Azmizam Manie @ Mani *, Saafie Salleh, Fuei Pien Chee, Afishah Alias & Saturi Baco
Faculty of Science and Natural Resources, Universiti Malaysia Sabah,
Jalan UMS, 88400 Kota Kinabalu, Sabah, MALAYSIA.
*Corresponding author: azmizam.manie@yahoo.com; Tel: +6 014 874 1296

ABSTRACT. This paper described the fabrication of Zinc Oxide (ZnO)-Cuprous Oxide (Cu2O) heterojunction thin films using RF-powered Magnetron Sputtering System. The deposition parameters were controlled to produce the films with the thicknesses in the range of 100 nm to 500 nm. During deposition, the RF power and the argon flow are fixed at 100 Watt and 10 sccm, respectively. Structural and optical properties were studied by X-Ray Diffraction Method and UV-VIS Spectrometer. The electrical properties were studied by IV SourceMeter. The grain sizes of both thin films increasing while the thickness increase. The band gap of ZnO thin films range from 3.25 eV -3.27 eV and for Cu2O thin films range from 2.00 eV – 2.15 e V. All Cu2O/ZnO thin films show ideal diode properties.

KEYWORDS: ZnO, Cu2O, thin film, heterojunction device

REFERENCES:

  • Craciun, V., Elders, J., Gardeniers, J.G.E., Geretovsky, J. & Boyd, I.W. Thin solid films 259 (1995) 1-4.
  • Dong, R., Lee, D. S., Xiang, W.F., Oh, S. J., Seoung, D. J., Heo, S. H. & Hwang, H. Journal Applied Physic Letter 90 042107 (2007).
  • Ghotbi, M. Y. “Nickel doped zinc oxide nanoparticles produced by hydrothermal decomposition of nickel-doped zinc hydroxide nitrate,” Particuology, vol. 10, no. 4, pp. 492–496, Aug. 2012.
  • Ievskaya, Y., Hoye, R. L. Z., Sadhanala, A., Musselman, K. P. & MacManus-Driscoll, J. L. “Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performance,” Solar Energy Material Solar Cells, vol. 135, pp. 43–48, 2014.
  • Lee, Y. S., Buonassisi, T. & Hardt, D. E. “Defect Engineering of Cuprous Oxide Thin-Films for Photovoltaic Applications,” 2013.
  • LI, J., Vizkelethy, G., Revesz, P. & Mayer, J. W. Journal Applied Physic 69 1020 (1991).
  • Mittiga, A., Salza, E., Sarto, F., Tucci, M. & Vasanthi, R. “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appied Physic Letter, vol. 88, no. December 2005, pp. 2005–2006, 2006.
  • Nam, T., Lee, C. W., Kim, H. J. & Kim, H. “Growth Characteristics and Properties of Ga-doped ZnO (GZO) Thin Films Grown by Thermal and Plasma-enhanced Atomic Layer Deposition,” Applied Surface Science, pp. 2–7, Jan. 2014.

 

Download Full Paper Here (Right-Click and Save As.. )

Volume 37, Issue 1 (Full Volume)

ORIGINAL ARTICLES
Extraction Of 4H-Pyran-4-One, 2,3-Dihydro-3,5-Dihydroxy-6-Methyl-, An Alternative Antifungal Agent, From Schizophyllum commune: Optimization And Kinetic Study
Yi Peng, Teoh and Mashitah, Mat Don

Biomonitoring of Streams: Using Ephemeroptera, Plecoptera and Trichoptera (EPT) in Responses to the Different Types of Land Use at Tabin Wildlife Reserve (TWR), Lahad Datu, Sabah, Malaysia
-  Arman Hadi Fikri, Audrey Ang Chii Shian, Sahana Harun &
Kueh Boon Hee

In Vitro Bioactivities and Phytochemicals Content of Vegetables from Sabah, Malaysia
- Jualang A. G., Adznila E., How S. E.

Chemical and Microbial Evaluation of Some Uncommon Indigenous Fruits and Nuts
- Ogwu, M. C., Osawaru, M. E. and Atsenokhai, E. I.

Growth and Yield Analysis of Sungkai (Peronema canescens Jack.) in Kalimantan, Indonesia
- Wahyudi, A. R Mojiol, Z. Muttaqin

Download FULL Volume Here (via Google Drive)