Volume 42 (Issue 2), September 2021

IRIS RECOGNITION USING SUPERVISED REGULARIZED MULTIDIMENSIONAL SCALING
- Sohana Jahan1, Sonia Akter2 and Farhana Ahmed Simi3

FLORISTIC COMMUNITY COMPOSITION IN RAFFLESIA’S HABITAT AT KINABALU PARK, SABAH.
– Rasyidah Wahab1, Kartini Saibeh2, Shamsul Khamis3

PAPER WASTES AS BEDDINGS IN VERMICOMPOST PRODUCTION
– Tengku Arisyah Tengku Yasim-Anuar a, John Keen, Chubo b*, and Marina, Mohd. Top @ Mohd. Tahc

SELECTED PHYSICO-CHEMICAL PROPERTIES OF PALM-BASED METHYL ESTER SULPHONATE (MES)
– FADZLINA ABDULLAH 1* , NUR AAINAA SYAHIRAH RAMLI 1 , FUMIYA NIIKURA 2 AND ZULINA ABD. MAURAD 1

Volume 42 (Issue 1), March 2021

AN IMAGE ENHANCEMENT METHOD BASED ON A S-SHARP FUNCTION AND PIXEL NEIGHBORHOOD INFORMATION
– Libao Yang, Suzelawati Zenian*, Rozaimi Zakaria

DYNAMIC SIMULATION ON THE RECOVERY OF 2-ACETYL PYRROLINE (2-AP) IN A PACKED BED COLUMN USING RICE HUSK CHAR AS SOLID ADSORBENT
– Carla Goncalves De Olievera Sarmento1 , Mohd Hardyianto Vai Bahrun1,**, Jidon Janaun1 , Awang Bono2,*, Duduku Krishnaiah3

EFFECTS OF CRITICAL MICELLE CONCENTRATION OF ANIONIC SURFACTANTS AND THEIR TOXICITY TO AQUATIC ORGANISMS
– Siti Afida, I*; Noorazah, Z and Razmah, G

ASCORBIC ACID DETERMINATION IN FRESH AND COMMERCIAL FRUIT JUICES BY DIFFERENTIAL STRIPPING VOLTAMMETRIC TECHNIQUE AT A GLASSY CARBON ELECTRODE
– Nur Syamimi Zainudin* and Zaihasra Azis

THE QUALITY ASSESSMENT OF HEAVY METALS IN MARINE SEDIMENTS FROM USUKAN COASTAL BEACH, KOTA BELUD, SABAH.
– Ling Sin Yi1 , Junaidi Asis1 & Baba Musta1*

Download Full Volume HERE

DYNAMIC SIMULATION ON THE RECOVERY OF 2-ACETYL PYRROLINE (2-AP) IN A PACKED BED COLUMN USING RICE HUSK CHAR AS SOLID ADSORBENT

Carla Goncalves De Olievera Sarmento1 , Mohd Hardyianto Vai Bahrun1,**, Jidon Janaun1 ,

Awang Bono2,*, Duduku Krishnaiah3

1Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS,

88400 Kota Kinabalu, Sabah, Malaysia

2GRISM Innovative Solutions, Kota Kinabalu, Sabah, Malaysia

3Department of Chemical Engineering, Anurag University, Hyderabad, Telangana 500088, India

*Corresponding author. E-mail: awangbono@gmail.com

**Corresponding author. E-mail: hardyvai14@gmail.com

ABSTRACT. Fragrant rice is known to contain the aromatic compound of 2-Acetyl Pyrroline (2-AP). This compound has been known as a major compound that gives fragrant characteristics in rice. However, this compound is volatile and easily escapes from the rice upon the drying process. In order to recover the release of 2-AP from rice upon drying, a packed bed adsorption system is employed using treated agricultural waste as a solid adsorbent. The experimental adsorption study in a batch mode for 2-AP onto treated rice husk char (TRHC) was used as a case study for this present work. Influences of three operational parameters towards the dynamic adsorption of 2-AP onto TRHC in a packed bed column were investigated by measuring the breakthrough and saturation time and mass transfer zone. This study suggests the possibility of treated agricultural waste as an alternative to capture the lost 2-AP during the paddy drying process.

KEYWORDS. Adsorption; Aromatic rice; Breakthrough curve; Treated rice husk; Simulation

 

REFERENCES

  • Ahmed, S., Unar, I. N., Khan, H. A., Maitlo, G., Mahar, R. B., Jatoi, A. S., Memon, A. Q., & Shah, A. 1.(2020). Experimental study and dynamic simulation of melanoidin adsorption from distillery effluent. Environmental Science and Pollution Research, 27(9), 9619–9636.
  • AspenONE. (2009). AspenONE v7.3 Reference Guide. AspenTech Inc.
  • Bahrun, M. H. V., Kamin, Z., Anisuzzaman, S. M., & Bono, A. (2021). Assessment of Adsorbent for Removing Lead (Pb) Ion in an Industrial-Scaled Packed Bed Column. Journal of Engineering Science and Technology, 16(2), 1213–1231.
  • Baradi, M. A. U., & Elepano, A. R. (2012). Aroma Loss in Rice as Affected by Various Conditions during Postharvest Operations. Philippine Agricultural Scientist, 95(3), 260–266.
  • Bono, A. (1989). Sorptive Separation of Simple Water Soluble Organics (Doctoral dissertations, University of Surrey, Guildford, United Kingdom). Retrieved from https://openresearch.surrey.ac.uk/esploro/outputs/doctoral/Sorptive-Separation-of-Simple Water-Soluble-Organics/99511759402346#files_and_links
  • Coker, A. K. (2007). Ludwig’s Applied Process Design for Chemical and Petrochemical Plants (4th ed.). Gulf Professional Publishing. da Rosa, C. A., Ostroski, I. C., Gimenes Meneguin, J.,
  • Gimenes, M. L., & Barros, M. A. S. D. (2015). Study of Pb2+ adsorption in a packed bed column of bentonite using CFD. Applied Clay Science, 104, 48–58.
  • Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). A new method for prediction of binary gas phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27. https://doi.org/10.1021/ie50677a007
  • Glueckauf, E. (1955). Theory of chromatography. Part 10: Formulae for diffusion into spheres and their application to chromatography. Transactions of the Faraday Society, 51, 1540–1551.
  • Green, D. W., & Perry, R. H. (2008). Perry’s Chemical Engineers’ Handbook (8th ed). The McGraw Hill Companies, Inc.
  • Hanafy, H., Sellaoui, L., Thue, P. S., Lima, E. C., Dotto, G. L., Alharbi, T., Belmabrouk, H., Bonilla -
  • Petriciolet, A., & Lamine, A. Ben. (2019). Statistical physics modeling and interpretation of the adsorption of dye remazol black B on natural and carbonized biomasses. Journal of Molecular Liquids, 299, 112099.
  • Hien, N. L., Yoshihashi, T., Sarhadi, W. A., & Hirata, Y. (2006). Sensory Test for Aroma and Quantitative Analysis of 2-Acetyl-1-Pyrroline in Asian Aromatic Rice Varieties. Plant Production Science, 9(3), 294–297. https://doi.org/10.1626/pps.9.294
  • Hymavathi, D., & Prabhakar, G. (2019). Modeling of cobalt and lead adsorption by Ficus benghalenesis L. in a fixed bed column. Chemical Engineering Communications, 206(10), 1264–1272.
  • Jangde, V., Umathe, P., Antony, P. S., Shinde, V., & Pakade, Y. (2019). Fixed-bed column dynamics of xanthate-modified apple pomace for removal of Pb(II). International Journal of Environmental Science and Technology, 16(10), 6347–6356.
  • Kongkiattikajorn, J. (2008). Effect of Storage Time and Temperature on Volatile Aroma Compounds and Physicochemical Properties of Rice. Kasetsart Journal – Natural Science, 42, 111–117.
  • Nadaf, A. B., Krishnan, S., & Wakte, K. V. (2006). Histochemical and biochemical analysis of major aroma compound (2-acetyl-1-pyrroline) in basmati and other scented rice (Oryza sativa L.). Current Science, 91(11), 1533–1536.
  • Sarmento, C. G. D. O. (2021). Adsorption of 2-Acetyl-1-Pyrroline (2-AP) by Using Rice Husk Chars (Unpublished master’s thesis). Universiti Malaysia Sabah, Sabah, Malaysia.
  • Suzuki, M., & Kawazoe, K. (1975). Effective Surface Diffusion Coefficients of Volatile Organics on Activated Carbon during Adsorption from Aqueous Solution. Journal of Chemical Engineering of Japan, 8(5), 379–382. https://doi.org/10.1252/jcej.8.379
  • Tan, W.-H., Bahrun, M. H. V., Surugau, N., & Bono, A. (2020). Evaluation of Adsorption Dynamic Retention of Copper Ion in Porous Agricultural Soil. Transactions on Science and Technology, 7(3), 90–100.
  • Yoshihashi, T., Huong, N. T. T., Surojanametakul, V., Tungtrakul, P., & Varanyanond, W. (2005). Effect of Storage Conditions on 2-Acetyl-1-pyrroline Content in Aromatic Rice Variety, Khao Dawk Mali 105. Journal of Food Science, 70(1). https://doi.org/10.1111/j.1365- 2621.2005.tb09061.x

Download Full Paper Here (Right-Click and Save As)

EFFECTS OF CRITICAL MICELLE CONCENTRATION OF ANIONIC SURFACTANTS AND THEIR TOXICITY TO AQUATIC ORGANISMS

Siti Afida, I*; Noorazah, Z and Razmah, G

1Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board,

6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

*Correspomdimg author. Email: siti.afida@mpob.gov.my

 

ABSTRACT. The critical micelle concentration (CMC) is the concentration of surfactants above which micelles are formed. The effects of CMC of methyl ester sulfonates (MES) on ecotoxicological behaviour of freshwater organisms in predicting the risk levels contributed from the surfactant used were determined. The surface tension of palm-based MES with various carbon chain lengths (C12, C14 and C16) was measured to determine the CMC. Ecotoxicity tests were conducted on three different aquatic organisms: green algae (Raphidocelis subcapitata), freshwater crustacean (Daphnia magna) and freshwater fish (Tilapia nilotica). The effective concentration of MES that caused 50% fish mortality (LC50), crustacean immobilization (EC50) and algae inhibition (EC50) was determined. Through surface tension analyses, the CMC obtained for MES C12, C14 and C16 was 1000 mg/L, 900 mg/L and 12 mg/L, respectively. The LC50 of MES C12, C14 and C16 were 391 mg/L, 22.6 mg/L and 12.6 mg/L, respectively, in fish. The crustacean EC50 of MES C12, C14 and C16 were >100 mg/L, 77.6 mg/L, and 1.15 mg/L. Meanwhile, algae EC50 of MES C12, C14 and C16 was 541 mg/L, 399 mg/L and >10 mg/L, respectively. Relative comparison showed that D. magna was observed to be more sensitive compared to R. subcapitata and T. nilotica towards MES of the same chain length. A linear relationship was observed between CMC and ecotoxicity values. The lower the CMC value, the lower is the LC50 or EC50 value and the surfactant becomes more toxic. It is suggested that the CMC value can be used as a toxicity indicator for anionic surfactant by considering that the EC50 value of a surfactant will be reached before its CMC value.

KEYWORDS: CMC, Ecotoxicity, Aquatic organisms, Environment

REFERENCES

  • Becher, P., (1984). Hydrophile−lipophile balance: history and recent developments (Langmuir lecture, 1983). J. Dispersion Sci. Technol 5: 81–96.
  • Calamari, D.; Marchetti, R., (1973). The toxicity of mixture of metals and surfactants to rainbow trout (Salmo gairdneri rich.). Water Research, 7: 1453-1464.
  • Fendinger, N. J., (1994) Environmental behaviour and fate of anionic surfactants. Environmental Chemistry of Lakes and Reservoirs (Baker, L A ed.). American Chemical Society, Washington, p. 528-557.
  • Fernández-Serrano, M.; Jurado, E.; Fernández-Arteaga, A.; Ríos, F.; Lechuga, M., (2014). Ecotoxicological assessment of mixtures of ether carboxylic derivative and amine-oxide-based non-ionic surfactants on the aquatic environment. Journal of Surfactants and Detergents, 17: 1161-1168.
  • Garcia, M. T.; Ribosa, I.; Guindulain, T.; Sanchez-Leal, J.; Vives-Rego, J., (2001). Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment. Environ. Pollut, 111: 169-75.
  • GESAMP, (2014). Revised GESAMP Hazard Evaluation Procedure for Chemical Substances Carried by Ships, International Maritime Organization.
  • Hisano, N.; Oya, M., (2010). Effects of surface activity on aquatic toxicity of binary surface mixtures. Journal of oleo science, 59: 589-599.
  • Inácio, Â. S.; Mesquita, K. A.; Baptista, M.; Ramalho-Santos, J.; Vaz, W. L.; Vieira, O. V., (2011). In vitro surfactant structure-toxicity relationships: Implications for surfactant use in sexually transmitted infection prophylaxis and contraception. PLoS One, 6:19850.
  • Ivanković, T.; Hrenović, J., (2010). Surfactants in the environment. Archives of Industrial Hygiene and Toxicology, 61: 95-110.
  • Jurado, E.; Fernández-Serrano, M.; Lechuga, M.; Ríos, F., (2012a). Environmental impact of ether carboxylic derivative surfactants. Journal of Surfactants and Detergents, 15: 1-7.
  • Jurado, E.; Fernández-Serrano, M.; Olea, J. N.; Lechuga, M.; Jiménez, J.; Ríos, F., (2012b). Acute toxicity of alkylpolyglucosides to Vibrio fischeri, Daphnia magna and microalgae: a comparative study. Bulletin of environmental contamination and toxicology, 88: 290-295.
  • Market Research Store (2015b). Global Fatty Methyl Ester Sulfonates (FMES) Market is expected to Reach USD 1.58 Billion in 2020 [Online]. Available: http://www.marketresearchstore.com/news/global-fatty-methyl-ester-sulfonates-fmes-market is-45 [Accessed 15/8/2015 Market Research Store, (2015a). Global Fatty Methyl Ester Sulfonates (FMES) Market for Household Detergents, Personal Care Products and Other Applications, 2014 – 2020.
  • Pavlić, Ž.; Vidaković-Cifrek, Ž.; Puntarić, D., (2005). Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere, 61: 1061-1068.8
  • Potokor, M. S., (1992). Acute, subacute and chronic toxicity data on anionics. Anionic Surfactants, Biochemistry, Dermatology (Gloxhuber, C and Kunstler, K eds.). 2nd ed., Surfactant Science Series, 43: 81-116.
  • Razmah, G.; Siti Afida, I.; Noorazah, Z.; Hazimah, A. H.; (2016). Acute ecotoxicity (48-hr EC50) assessment of palm-based methyl ester sulphonates (MES) towards Daphnia magna. Journal of Oil Palm Research, 28: 74-80.
  • Razmah, G.; Siti Afida, I.; Zulina, A.M.; Noorazah, Z.; Hazimah, A.H., (2015). A comparative study of the ecotoxicity of palm-based methyl ester sulphonates (MES) to Tilapia and Daphnia magna. Journal of Oil Palm Research, 28: 387-392.
  • Ríos, F.; Lechuga, M.; Fernández-Serrano, M.; Fernández-Arteaga, A., (2017). Aerobic biodegradation of amphoteric amine-oxide-based surfactants: Effect of molecular structure, initial surfactant concentration and pH. Chemosphere, 171: 324-331.
  • Sanchez Leal, J.; González, J. J.; Comelles, F.; Campos, E.; Ciganda, T., (1991). Biodegradability and Toxicity of anionic surfactant. Acta hydrochim hydrobiol, 19: 703-709.
  • Siti Afida, I.; Razmah, G.; Zulina, A.M.; Noorazah, Z., (2017). Ecotoxicology Study of Various Homologues of Methyl Ester Sulfonates (MES) Derived from Palm Oil. Journal of Surfactants and Detergents, 20: 1467–1473.
  • Toshiharu, T.; Horoshi, O.; Kazuaki, M.; Yutaka, T., (2006). Ecotoxicity of Tetradecanoic Acid, 2-sulfo-, 1-methylester, Sodium Salt (C14MES). Journal of Oleo Science, 55: 121- 126.

Download Full Paper Here (Right-Click and Save As)

ASCORBIC ACID DETERMINATION IN FRESH AND COMMERCIAL FRUIT JUICES BY DIFFERENTIAL STRIPPING VOLTAMMETRIC TECHNIQUE AT A GLASSY CARBON ELECTRODE

Nur Syamimi Zainudin* and Zaihasra Azis

1Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, Jengka Campus,

26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

* Corresponding author. Email: nursyamimizainudin@uitm.edu.my

ABSTRACT. Ascorbic acid, also known as Vitamin C cannot be synthesized by humans. Ascorbic acid is commonly found in a variety of vegetables and fruits such as mangoes, oranges, broccolis and lettuce. Hence, vegetables and fruits become the main sources of ascorbic acid to meet dietary intake. The differential pulse anodic stripping voltammetry (DPASV) technique using glassy carbon electrode (GCE) as a working electrode and phosphate buffer at pH 4.2 as a supporting electrolyte has been proposed for ascorbic acid determination in natural and commercial fruit juices. The optimum instrumental conditions for electroanalytical determination of ascorbic acid by the proposed DPASV technique were initial potential (Ei) = 0 V, end potential (Ef)= 0.8 V, accumulation time (tacc) = 60 s, scan rate (v) = 0.125 V/s and pulse amplitude = 0.150 V. The anodic peak appeared at 0.3598 V. The curve was linear from 0.028 to 1.703 mM (R2=0.9999) with a detection limit of 0.0114 mM. The precisions in terms of relative standard deviation (RSD) were 1.30%, 0.50% and 0.06%, respectively. The ruggedness of the proposed DPASV technique was tested with statistical F-test. Satisfactory recoveries ranging from 73.65±1.70% to 101.93±1.65% were obtained for three different known concentrations of AA in the fruit juice samples. It can be concluded that the proposed technique is precise, accurate, rugged, low cost, fast and has the potential to be an alternative method for routine analysis of ascorbic acid in natural and commercial fruit juices.

KEYWORDS: Ascorbic Acid, Commercial Fruit Juice, Glassy Carbon Electrode, Voltammetry

 

REFERENCES

  • Aabraha, T. & Sargawie, A. (2014). Assessment of some selected Beverages and Fresh Edible Vegetables as Nutritional Source of Vitamin C (Ascorbic Acid) by Cyclic and Square Wave Voltammetry. International Journal of Science and Engineering Investigation 26(3): 39-49.
  • Bergamini, M.F., Santos, D.P. & Zanoni, M.V.B. (2010). Determination of Major and Minor Elements in through ICP-AES. Environmental Engineering and Management Journal 7(6): 805-808.
  • De Lima, F., Gozzi, F., Fiorucci, A.R., Cardoso, C.A.L., Arruda, G.J. & Ferreira, V.S. (2011). Determination of linuron in water and vegetable samples using stripping voltammetry with carbon paste electrode. Talanta 83:1763-1768.
  • Dioha, I.J., Olugbemi, O., Onuegbu, T. & Shahru, Z. (2011). Determination of some tropical fruits by iodometric titration. International Journal of Biological and Chemical Sciences 5(5): 2180-
  • Farahi, A., Lahrich, S., Achak, M., El Gaini, L., Bakasse, M. & El Mhammedi, M. A. (2014). Parameters affecting the determination of paraquat at silver rotating electrodes using differential pulse voltammetry. Analytical Chemistry Research 1: 16-21.
  • Gazdik, Z., Zitka, O., Petrlova, J., Adam, V., Zehnalek, J., Horna, A., Reznicek, V., Beklova, M. & Kizek, R. (2008). Determination of Vitamin C (Ascorbic Acid) Using High Performance Liquid Chromatography Coupled with Electrochemical Detection. Sensors 8: 7097–7112.
  • Geremedhin, W., Amare, M. & Admassie, S. (2013). Electrochemically pretreated glassy carbon electrode for electrochemical detection of fenitrothion in tap water and human urine. Electrochimica Acta 87: 749 – 755.
  • Jain, R. & Rather, J.A. (2011). Stripping voltammetry of tinidazole in solubilized system and biological fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 378: 27-
  • Jain, R. & Sharma, S. (2012). Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems. Journal of Pharmaceutical Analysis 2(1): 56-61.
  • Klimczak, I. & Gliszczy´nska-Swigło, A. (2015). Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chemistry 175: 100–105.
  • Liamas, N.E., Nezio, M.S. & Band, B.S.F. (2011). Flow-injection spectrophotometric method with on line photodegradation for determination of ascorbic acid and total sugars in fruit juices. Journal of Food Composition and Analysis 24: 127-130.
  • Okiei, W., Ogunlesi, M., Azeez, L., Obakachi, V., Osunsansi, M. & Nkenchar, G. (2009). The Voltametric and Titrimetric Determination of Ascorbic Acid Levels in Tropical Fruit Samples. International Journal of Electrochemical Science 4: 276-287.
  • Miranda, M. P., del Rio, R., del Valle, M. A., Faundez, M. & Armijo, F. (2012). Use of fluorine-doped tin oxide electrodes for lipoic acid determination in dietary supplements. Journal of Electroanalytical Chemistry 668: 1 – 6.
  • Morris, J.R., Bates, R.P. & Philip, G.G. (2001). Principles and Practices of small and medium scale fruit juice processing. United State.
  • Ngai, K.S, Tan, W.T, Zulkarnain, Z., Ruzniza, M.Z. & Mohammed, Z. (2013). Voltammetry Detection of Ascorbic Acid at Glassy Carbon Electrode Modified by Single-Walled Carbon Nanotube/Zinc Oxide. International Journal of Electrochemical Science 8: 10557-10567.
  • Nur Syamimi, Z., Norbaitina, S. & Megat, A.K.M.H. (2020). Validation and Determination of Ascorbic Acid in Multivitamin Tablets by Differential Pulse Anodic Stripping Voltammetric Technique at a Bare Glassy Carbon Electrode. Malaysian Journal of Analytical Science 24 (6): 838-847.
  • Nur Syamimi, Z., Mohamad Hadzri, Y. & Noor Zuhartini, M.M. (2016). Voltammetric determination of Reactive Black 5 in waste water samples from the batik industry. Malaysian Journal of Analytical Science 20: 1254-1268.
  • Nweze, C.C., Abdulganitu, M.G & Erhabor, O.G. (2015). Comperative analysis of vitamin C in fresh fruit juices of Malusdomestica, Citrus Sinensi, AnanasComosus and CitrullusLanatus by Iodometric titration. International Journal of Science 4(1): 17-22.
  • Ogunlesi, M., Okiei, W., Azeez, L., Obakachi, V., Osunsanmi, M. & Nkenchar, G. (2010). Vitamin C Contents of Tropical Vegetables and Food Determined by Voltammetric and Titrimetric Methods and Their Relevance to the Medical Uses of the Pants. International Journal of Electrochemical Sciences 5: 105-115.
  • Packer, L., and Fuchs, J. Vitamin C in health and disease. Marcel Dekker, Inc. New York, Basel, Hong Kong 1997.
  • Pisoschi, A.M., Pop, A., Negulescu, G.P. & Pisoschi, A. (2011). Determination of Ascorbic Acid Content of Some Fruit Juices and Wine by Voltammetry Performed at Pt and Carbon Paste Electrodes. Molecules 16: 1349-1365.
  • Radi A.E., Nassef, H.M. & El Basiony, A. (2011). Electrochemical behaviour and analytical determination of Reactive Red 231 on glassy carbon electrode. Dyes and Pigments 99: 924-
  • Raghu, V., Platel, K. & Srinivason, K. (2007). Comparison of Ascorbic Acid Content of Some Fruit Juices and Wine by Voltammetry Performed at Pt and Carbon Paste Electrodes. Molecules 16:1349-1365.
  • Sadia, G., Azizuddin., Rafi, A., Kousar, Y., Fareed, A. & Iftekhar, S. (2014). Determination of Ascorbic Acid Content of Some Capsicum Cultivars by Cyclic Voltammetry performed at GCE by External Standard Series Calibration Method. International Journal of Electrochemical Science 9: 5751-5762.
  • Sezgin, H., V., Dilgin, Y. & Gokcel, H., I. (2016). Adsorption and deposition-assisted anodic stripping voltammetry for determination of antimony (III) in presence of hematoxylin on glassy carbon electrode. Talanta 164: 677-683.
  • Sona, S., Jiri, M., Jiri, S., Mojmir, B., Jindrich, K. & Tunde, J. (2015). Determination of Ascorbic Acid by Electrochemical Techniques and other Methods. International Journal of Electrochemical Science 10: 2421-2431.
  • Skrovanko, S., Micek, J., Sochar, J., Baron, M, M Kynicky, J. & Jurikova, T. (2015). Determination of ascorbic acid by Electrochemical Technique and other methods. International Journal of Electrochemical Sciences 10: 2421-2431.
  • Tareen, H., Mengal, F., Masood, Z., Mengal, R., Ahmed, S., Bibi, S., Shoaib, S., Sami, U., Mandokhail, F., Riaz, M., Farhan, N & Nawaz, Z. (2015). Determination of vitamin c content in Citrus Fruits and in Non-Citrus Fruits by Titrimetric Method with Special Reference to their nutritional importance in human diet. Biological Forum-An International Journal 7(2): 367-
  • Tyagi, G., Jangir, D.K., Singh, R., Mehrotra, R., Ganaseran, R. & Gopal, E.S.R. (2014). Rapid determination of main constituents of packed juices by reverse phase-high performance liquid chromatography: an insight in to commercial fruit drinks. Journal of Food Science and Technology 51(3): 476–484.
  • Valente, A., Albuquerque, T.G., Ana, S.S. & Costa, H.S. (2011). Ascorbic acid content in exotic fruits. A contribution to produce quality data for food composition database. Food Research International 44: 2237-2242.
  • Yilmaz, S., Sadikoglu, M., Saglikoglu, G., Yagmur, S. & Askin, G. (2008). Determination of Ascorbic Acid in Tablet Dosage Forms and Some Fruit Juices by DPV. International Journal of Electrochemical Science 3: 1534-1542.
  • Zhang, Y., Zhou, W., Yan, J., Liu, M., Zhou, Y., Shen, X., Ma, Y., Feng, X., Yang, J. & Li, G. (2018). A review of the extraction and determination methods of thirteen essential vitamins to the human body: An update from 2010. Molecules 23: 1-25.

Download Full Paper Here (Right-Click and Save As)

THE QUALITY ASSESSMENT OF HEAVY METALS IN MARINE SEDIMENTS FROM USUKAN COASTAL BEACH, KOTA BELUD, SABAH.

Ling Sin Yi1 , Junaidi Asis1 & Baba Musta1*

1Geology Program, Faculty of Science and Natural Resources,

Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

* Corresponding author. Email: babamus@ums.edu.my

ABSTRACT. A total of fifty-three (53) sediment samples were collected from Usukan coastal beach to study the potential of pollution due to heavy metals in the marine ecosystem. The sediment samples were collected along the coastal beach using a core sampler. The ICP-OES analysis was used to identify the concentration of heavy metals in the marine sediment samples. The results of pH analysis showed the increase of pH from 5.69 to 8.48 from inland into the sea. The lowest moisture content was 4.99%, whereas the highest was 48.75%. The organic matter ranges from 0.30 to 6.73%. The sediment texture varies from sandy, sandy loam, and sandy clay loam texture. The decreasing rank ing order of heavy metals concentration is Fe (4476-29829 ppm) followed by Al (5803-8524 ppm) and Mn (103-504 ppm), which are still within the background values and standard limits. The assessment of Fe, Al and Mn contamination in sediment samples was performed by comparing with the allowable range of average background values and the standard limits from Sediment Quality Guideline (SQG) in marine sediment. In conclusion, the results of quality assessment using the geoaccumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), and pollution load index (PLI) showed that the sediment from Usukan beach has a very low contamination level that causes only mild pollution.

KEYWORDS. Geochemistry, Heavy Metal, Sediment Quality, Marine Environment

 

REFERENCE

  • Abolfazl, N. & Ahmad, I. 2012. Sediment quality assessment of Klang Estuary, Malaysia. Aquatic Ecosystem Health & Management: 15(3): 287-293.
  • Ahmed, A. & Askri, B. 2016. Seawater Intrusion Impacts on the Water Quality of the Groundwater on the Northwest Coast of Oman. Water Environment Research: 88: 732-740.
  • Allaway, W.H. 1957. pH, soil acidity and plant growth. Soil: 67-71.
  • Amir, M., Iqbal, M., Zainal, S. & Manap, A. 2020. Static Adsorption of Amphoteric Surfactant. Offshore Technology Conference.
  • Atherton, R.J., Baird, A.J. & Wiggs, G.F.S. 2001. Intertidal dynamics of surface moisture content on a meso-tidal beach. J. Coastal Res.: 17: 482–489.
  • Ball, J. 2001. Soil and Water Relationships. Noble Research Institute, 1 Sep 2001, Retrieved: https://www.noble.org/news/publications/ag-news-and-views/2001/september/soil-and-waterrelationSSships/.
  • Bauer, A., Radziejewska, T., Liang, K., Kowalski, N., … & Waniek, J.J. 2013. Regional differences of hydrographical and sedimentological properties in the Beibu Gulf, South China Sea. Journal of Coastal Research: 66 (10066): 49-71.
  • Birch, G. 2018. A review of chemical-based sediment quality assessment methodologies for the marine environment. Marine pollution bulletin: 133: 218-232.
  • Boyle, E.A. 1983. Manganese carbonate overgrowths on foraminifera tests. Geochimica et Cosmochimica Acta: 47(10). The Quality Assessment of Heavy Metals in Marine Sediments from Usukan Coastal Beach, Kota Belud, Sabah
  • BSI. 1990. BS1377: 1990 British Standard Methods of Tests for Soils for Civil Engineering Purposes. London: British Standard Institution (BSI).
  • Canfield, D. 1989. Reactive iron in marine sediments. Geochimica et cosmochimica acta.: 53: 619-32.
  • Chen, S., Takematsu, N., Ambe, S., Ament, A. & Ambe, F. 1994. A Mössbauer spectroscopy study on iron in marine sediments. Hyperfine Interactions: 91: 759-763.
  • Chuan, O.M. & Yunus, K. 2019. Sediment and organisms as marker for metal pollution. In Monitoring of Marine Pollution. IntechOpen: 1-19.
  • Clement, J.F. & Keij, J. 1958. Geology of the Kudat Peninsula, North Borneo (Compilation) GR783.
  • Unpublished Reports of the Royal Dutch Shell Group of Companies in British Borneo.
  • Csuros, M. & Csuros, C. 2002. Environmental Sampling and Analysis for Metals. Boca Raton, USA: Lewis Publishers.
  • Collenette, P. 1957. Notes on the geology of the headwaters of the Labuk, Sugut and Karamuak Rivers. Brit. Borneo Geol. Suv. Ann. Rep.:153-162.
  • Dezileau, L. & Pizarro, C. & Rubio, M. 2007. Sequential extraction of iron in marine sediments from the Chilean continental margin. Marine Geology – MAR GEOLOGY: 241: 111-116.
  • Ding, Z., Koriem, M.A., Ibrahim, S.M., Antar, A.S., Ewis, M.A., He, Z. & Kheir, A. M. 2020. Seawater intrusion impacts on groundwater and soil quality in the northern part of the Nile Delta, Egypt. Environmental Earth Sciences: 79(13): 1-11.
  • Djkstra, F. & Fitzhugh, R. 2003. Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the North Eastern United States. Geoderma: 114: 33-
  • Durães, N., Novo, L.A., Candeias, C. & Da Silva, E.F. 2018. Distribution, transport and fate of pollutants. In Soil pollution. Academic Press: 29-57.
  • Force, E.R. & Cox, L.J. 1991. Manganese contents of some sedimentary rocks of Paleozoic age in Virginia. US Government Printing Office.
  • Förstner, U. 2006. Contaminated sediments: lectures on environmental aspects of particle-associated chemicals in aquatic systems. Chicago: The University of Chicago Press Vol. 21.
  • Gopal, V., Achyuthan, H. & Jayaprakash, M. 2017. Assessment of trace elements in Yercaud Lake sediments, southern India. Environ Earth Sci.: 76: 63.
  • Govind, A.V., Behera, K., Dash, J.K., Balakrishnan, S., Bhutani, R., Managave, S. & Srinivasan, R. Trace element and isotope Geochemistry of Neoarchean carbonate rocks from the Dharwar craton, southern India: Implications for depositional environments and mantle influence on ocean chemistry. Precambrian Research: 357.
  • Grecco, L., Gómez, E., Botté, S., Marcos, Á., Marcovecchio, J. & Cuadrado, D. 2011. Natural and anthropogenic heavy metals in estuarine cohesive sediments: Geochemistry and bioavailability. Ocean Dynamics – OCEAN DYN: 61: 285-293.
  • Gui, Y., Zhang, Q., Qin, X. & Wang, J. 2021. Influence of Organic Matter Content on Engineering Properties of Clays. Advances in Civil Engineering 2021: 1-11.
  • Gwak, Y.S. & Kim, S.H. 2016. Factors Affecting Soil Moisture Spatial Variability for a Humid Forest Hillslope. Hydrological Processes.
  • Hakanson, L. 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water. Res.: 14: 975–1001.
  • Hall, R. & Breitfeld, H.T. 2017. Nature and Demise of the Proto-South China Sea. Bulletin of the Geological Society of Malaysia: 63.
  • Han, F.X., Kingery, W.L. & Selim, H.M. 2001. Accumulation, redistribution, transport, and bioavailability of heavy metals in waste-amended soils. CRC Press: In Trace Elements in Soil: 161-190.
  • Hart, B.T. 1982. Uptake of trace metals by sediments and suspended particulates: A review. Hydrobiol.: 91: 299–313.
  • Jayamurali, D., Varier, K., Liu, W., Jegadeesh, P.H., Yaacov, B.D., Shen, X. & Gajendran, B. 2021. An Overview of Heavy Metal Toxicity. ReseachGate.
  • Junaidi, A. & Basir, J. 2012. Aptian to Turonian radiolaria from the Darvel Bay Ophiolite Complex, Kunak, Sabah. Bulletin of Geol. Soc. Malaysia: 58: 89-96.
  • Le Pera, E., Arribas, J., Critelli, S. & Tortosa, A. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): implications for provenance studies. Sedimentology: 48(2): 357-378.
  • Li, N., Feng, D., Wan, S., Peckmann, J., Guan, H., Wang, X., … & Chen, D. 2021. Impact of methane seepage dynamics on the abundance of benthic foraminifera in gas hydrate bearing sediments: New insights from the South China Sea. Ore Geology Reviews: 104247.
  • Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X. & Han, W. 2019. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal: 28(4): 380-394.
  • Lindsay, W.L. 1979. Chemical equilibria in soils. New York: John Wiley & Sons.
  • Luo, J.Z., Sheng, B.X. & Sheng, Q.Q. 2020. A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion. Journal of Fuel Chemistry and Technology: 48 (11).
  • Maher, W., Batkey, G.E. & Lawrence, I. 1999. Assessing the health of sediment ecosystems: Use of chemical measurements. Freshwater Biol.: 41: 361–372.
  • McCauley, A., Jones, C. & Olson-Rutz, K. 2017. Soil pH and Organic Matter. Nutrient Management: 8: 1-4.
  • Moore, C. & Bostrom, K. 1978. The elemental compositions of lower marine organisms. Chemical Geology – CHEM GEOL: 23: 1-9.
  • Muli, M. M. 2017. Metals in Plants and Soils Along a Section of Nairobi. School of Pure and Applied Science, Kenyatta University.
  • Müller, G. 1969. Index of geoaccumulation in the sediments of the Rhine River. Geojournal: 2:108–
  • Myung, C. J. 2008. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine. US National Library of Medicine: 8(4): 2413-2423.
  • Namikas, S.L., Edwards, B.L., Bitton, M.C.A., Booth, J.L. & Zhu, Y. 2010. Temporal and spatial variability in the surface moisture content of a fine-grained beach. Geomorphology: 114: 303–
  • Narejo, A.A., Shar, A.M., Fatima, N. & Sohail, K. 2019. Geochemistry and origin of Mn deposits in the Bela ophiolite complex, Balochistan, Pakistan. Journal of Petroleum Exploration and Production Technology: 9(4): 2543-2554.
  • Neff, J. M. 2002. Bioaccumulation in Marine Organisms. Massachusetts. Elsevier Publisher: 175-189.
  • Nicholson, K., Hein, J.R., Biilm, B. & Dasgupta, S. 1997. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society of London Special Publication: 119: 370.
  • NOAA, U. 1999. Screening Quick Reference Tables (SQuiRTs). Coastal protection and restoration division. National Marine Fisheries Service (NMFS). US Dep. Commer. National Oceanic and Atmospheric Adminstration (NOAA) Tech. Memo.: Our Living Oceans. Report on the status of US living marine resources, 1999.
  • Prasad, R. and J.F. Power. 1997. Soil Fertility Management for Sustainable Agriculture. New York: Lewis Publishers.
  • Sanudin, T. & Baba, M. 2007. Pengenalan kepada Stratigrafi. Kota Kinabalu: Penerbit Universiti Malaysia Sabah.
  • Seaward, M.R.D. & Richardson, D.H.S. 1989. Atmospheric sources of metal pollution and effects on vegetation. Heavy metal tolerance in plants: Evolutionary aspects: 75-92.
  • Schmutz, P. & Namikas, S. 2018. Measurement and modeling of the spatiotemporal dynamics of beach surface moisture content. Aeolian Research: 34: 35–48.
  • Sparks, D.L. 2003. Environmental soil chemistry. London: Elsevier, Academic Press.
  • Sugisaki, R., Sugitani, K. & Adachi, M. 1991. Manganese carbonate bands as an indicator of hemipelagic sedimentary environments. The Journal of Geology: 99(1): 23-40.
  • Taylor, K.G. & Macquaker, J.H. 2011. Iron minerals in marine sediments record chemical environments. Elements: 7(2): 113-118.
  • Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. & Sutton DJ. 2012. Heavy metal toxicity and the environment. Exp Suppl.: 101:133-64.
  • Tomlinson, D.L., Wilson, J.G., Harris, C.R. & Jeffrey, D.W. 1980. Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen: 33(1-4), 566-575.
  • Tongkul, F. 2006. The structural style of Lower Miocene Sedimentary Rocks, Kudat Peninsula, Sabah. Bulletin of the Geol. Soc. of Malaysia: 49: 119-124.
  • Tsai, H.H. & Schmidt, W. 2020. pH-dependent transcriptional profile changes in iron deficient Arabidopsis roots. BMC Genomics: 21: 694.
  • Turekian, K.K. & Wedepohl, K.H. 1961. Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull.: 72(2): 175-92.
  • United States Department of Agriculture, Soil Conservation Service (USDA). 1975. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Soil Surv. Staff. U.S. Dep. Agric. Handbook: 436.
  • U.S. Environmental Protection Agency. 2014. Method 6010D (Revision 4): Inductively coupled-plasma atomic emission spectrometry. Washington, DC: Environmental Protection Agency.
  • Vallius, H., Ryabchuk, D. & Kotilainen, A. 2007. Distribution of heavy metals and arsenic in soft surface sediments of the coastal area off Kotka, northeastern Gulf of Finland, Baltic Sea. Geological Survey of Finland Special Paper: 45: 33–48.
  • Xiang, M., Li, Y., Yang, J., Lei, K., Li, Y., Li, F., Zheng, D., Fang, X. & Cao, Y. 2021. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution: 278.
  • Yang, W., Cao, Z., Zhang, H. & Lang, Y. 2021. A national wide evaluation of heavy metals pollution in surface sediments from different marginal seas along China Mainland, Regional Studies in Marine Science: 42.
  • White, W.M. 2020. Geochemistry: The Oceans as a Chemical System. Oxford: John Wiley & Sons.
  • Wuana, R. & Okieimen, F. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ResearchGate: ISRN Ecology
  • Zhang, X., Zhong, T., Liu, L. & Ouyang, X. 2015. Impact of Soil Heavy Metal Pollution on Food Safety in China. PLoS ONE: 10(8).
  • Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W. & Marhaba, T. 2018. pH effect on heavy metal release from a polluted sediment. Journal of Chemistry.

Download Full Paper Here (Right-Click and Save As)

AN IMAGE ENHANCEMENT METHOD BASED ON A S-SHARP FUNCTION AND PIXEL NEIGHBORHOOD INFORMATION

Libao Yang, Suzelawati Zenian*, Rozaimi Zakaria

Faculty of Science and Natural Resources, Universiti Malaysia Sabah,

88400 Kota Kinabalu, Sabah, Malaysia.

* Corresponding author: Suzelawati Zenian

Email: suzela@ums.edu.my

ABSTRACT. Image enhancement is a significant field in image processing. This paper proposes an enhancement method based on an S-sharp function of grayscale transformation and neighborhood information. Firstly, a function is established based on the sine function. Then, the image threshold is added into the function. Finally, the result grayscales are modified by parameter, where parameter is determined by the image pixel neighborhood information. In general, in the result image, each pixel grayscale is determined by both the sine function with threshold and the parameter . In the experiment results, the NIEM method (we proposed) achieves better performance than the comparison algorithms. It gets the smallest MSE and the highest PSNR, SSIM. In image Lena test, MSE value:330.8151, PSNR value:22.9350, and SSIM value: 0.9451. In image Pout test, MSE value:132.0988, PSNR value:26.9218, and SSIM value: 0.9604.

KEYWORDS. Image enhancement, S-sharp function, Standard deviation, Threshold.

 

REFERENCES

  • Daeyeong, Kim, Changick, and Kim. (2017) Contrast enhancement using combined 1-d and 2-d histogram-based techniques. IEEE Signal Processing Letters, 24(6), 804-808.
  • Magudeeswaran Veluchamy, Bharath Subramani. (2020) Fuzzy dissimilarity color histogram equalization for contrast enhancement and color correction. Applied Soft Computing, 89(1):106077.
  • Pal, S. K. and King, R. A. (1980) Image enhancement using fuzzy set, Electronics letters 16(10), 376-
  • Yang Ciyin, Huang Lianqing. (2002) X-ray image enhancement based on sinusoidal grayscale transformation. Optical Technology, 05,407-408.
  • Gong, C., Luo, C. and Yang, D. (2012) Improved image enhancement algorithm based on sine gray level transformation. Video Engineering 13, 60–63.
  • Lisani, J. L. . (2020) Local contrast enhancement based on adaptive logarithmic mappings. Image Processing On Line, 10, 43-61.
  • Zhang, Y. R. K. Y. and Feng, C. (2020). Image enhancement algorithm based on quadratic function and its implementation with fpga. Modern Electronics Technique 43(8), 72-76,81.
  • Thung, K.-H. and Raveendran, P. (2009) A survey of image quality measures. 2009 international conference for technical postgraduates (TECHPOS), IEEE, pp. 1-4.
  • Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. (2004) Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13(4), 600-612.
  • Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. (2011) The ssim index for image quality assessment, http://www.cns.nyu.edu/ lcv/ssim/ (https://ece.uwaterloo.ca/~z70wang/research/ssim/).
  • Otsu, N..(1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.

Download Full Paper Here (Right-Click and Save As)

Volume 41 (Issue 2, September 2020)

The Composition of Chitin, Chitosan and its Derivatives in the Context of preparation and Usability – A Review.
- Syaheera Md Zin1, Adnin Awalludin1, Newati Wid1, Kamarulzaman Abd. Kadir2 and Mohd Sani Sarjadi1,*

Estimating Mangrove Above-ground Biomass (AGB) in Sabah, Malaysia Using Field Measurements, Shuttle Radar Topography Mission and Landsat Data
- Charissa Jasmine Wong1, Daniel James1, Normah Awang Besar1 and Mui-How Phua1*

Quantifying Aboveground Biomass over 50-Ha Tropical Forest Dynamic Plot in Pasoh, Malaysia Using LiDAR and Census Data
- Hamdan Omar1*, Muhamad Afizzul Misman1  and Yao Tze Leong1

Tourist Satisfaction at Nature-based Tourism Destination around Kota Kinabalu, Sabah
- Talib, H.

Tourist Satisfaction Dimension in Kinabalu Park, Sabah, Malaysia
- Timothy Ajeng Mereng[1], Hamimah Talib1* and Jennifer Chan Kim Lian[2]
Download FULL Journal HERE

THE COMPOSITION OF CHITIN, CHITOSAN AND ITS DERIVATIVES IN THE CONTEXT OF PREPARATION AND USABILITY- A REVIEW

Syaheera Md Zin1, Adnin Awalludin1, Newati Wid1, Kamarulzaman Abd. Kadir2 and Mohd Sani Sarjadi1*

1Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
2Enviro Clean Energy Sdn. Bhd. Suite, Level 5, Bangunan Perkim, No. 150, Jalan Ipoh, 51200, Kuala Lumpur, Malaysia.

*Corresponding author: msani@ums.edu.my

ABSTRACT. The demand for chitosan polymer in domestic and industrial use is increasingly rising. The applications are widely used in the fields of nutrition, cosmetics, biomedical, pharmaceutical, water treatment and agriculture. Normally, the preparation of chitin comes from a bio-waste source and requires three chemical processes including demineralisation, deproteinisation, and discolouration. Meanwhile, the preparation of chitosan from chitin is through the process of deacetylation. The production of chitosan and its derivatives have covered various fields, including synthetic polymers. It has also become a medium and alternative material helping to solve many problems including being able to save time, cost and energy in the production of a material. Then, there will be a positive impact on environmental sustainability and biomedical engineering. The chitin derivatives resulting from deacetylation of chitosan are also flexible enough to be lysosomal enzymes, which can be used as carriers of active drug substances in the body system. Various efforts and research have been carried out on the development of chitosan-based polymeric materials, in particular organic polymers. Chitosanbased polymers can be used as an alternative to replace petroleum and natural gas resources. Besides, it is easy to dispose of, degrades quickly, has a short shelf life and is environmentally friendly. It is proven as many previous reports and studies on the synthesis, characteristics and use of these polymers around the world. The purpose of this review is to explain the properties, methods of preparation and use of chitin, chitosan and its derivatives.

KEYWORDS. Chitosan, chitin, deacetylation, polymer

 

  • REFERENCE
    Allan, C. R. & Hadwiger, L. A. 1979. The fungicidal effect of chitosan on fungi of varrying cell wall composition. Journal in Experimental of Mycol, 3:285-287.
  • Anaraz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G. & Heras, A. 2009. Functional Characterisation of Chitin and Chitosan. Journal of Current Chemical Biology, 3:203-230. Annaduzzaman, M. 2015. Chitosan Biopolymer As An Adsorbent For Drinking Water Treatment: Investigation on Arsenic and Uranium. Thesis, Department of Sustainable Development, Environmental Science and Engineering. Sweden: KTH Royal Institute of Technology.
  • Asford, N. A., Hattis, D. & Murray, A. E. 1977. Industrial prospects for chitin and protein from shellfish wastes. Cambridge, MA: MIT . Atkins, E. 1985. Conformations in polysaccarides and complex carbohydrates. Journal of Bioscience, 8:375-387.
  • Austin, P. R. 1975. Solvents and purification of chitin. Chemical,3(892):731.
  • Austin, P. R., Brine, C. J., Castle, J. E. & Zikaris, J. P. 1981. Chitin: New facets of research. Journal of Science, 212:749.
  • Baxter, A., Dillon, M. & Taylor, K. D. A. 1992. Improved method for IR determination of the degree of N-acetylation of chitosan. International Journal of Biological Macromolecules, 14(3):166- 169.
  • Benavente, M. 2008. Adsorption of metallic ions onto chitosan: Equilibrium and Kinetic Studies. TRITA CHE. Black, C. A. 1965. Methods of Soil Analysis: Part 1 Physical and Mineralogical properties. American Society of Agronomy.
  • Blair, H. S., Guthrie, J., Law, T. & Turkington, P. 1987. Chitosan and modified chitosan membranes I. Preparation and characterisation, J. Appl. Polym. Sci., 33:641 -656.
  • Batista, I. & Roberts, G. A. F. 1990. A novel, facile technique for deacetylating chitin. Markromol. Chem., 191:429-434.
  • Bough, W. A., Salter, W. L., Wu, A. C. M. & Perkins, B. E. 1978. Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. 1. Chemical composition, viscosity, and molecular weight distribution of chitosan products. Biotechnol. Bioeng., 20: 931.
  • Brine, C. J., Sandford, P. A & Zikaris, J. P. 1977. Advances in Chitin and Chitosan Its Composition and Sequences to determined by high-field proton and carbon N.M.R.-spectroscopy- Relation to Solubility. Elsevier Applied Science, 127.
  • Brzeski, D. 1987. Chitin and Chitosan-putting waste to good use. Infofish International Journal, 5:31- 33. Capozza, R. C. 1975. Enzymically decomposable biodegradable pharmaceutical carrier. Ger. Patent, 2(305):505.
  • Charles, W. L., Admed, E. G., Edo, C., Samir, D., Clauzell, S., John, L., Victor, K & Joseph, A. 1994. Potential of induced resistance to control postharvest diseases of fruits and vegetables. 45 Wiltshire Road, Kearneysville: Appalachian Fruit Res. St.
  • Cheba, B. A. 2020. Chitosan: Properties, Modifications and Food Nanobiotechnology, Procedia Manufacturing, 46, 652-658.
  • Chen, R. H., Lin, W. C. & Lin, J. H. 1994. Effects of pH, ionic strength and type of anion on the rheological properties of chitosan solutions. Acta Polymer, 45:41-46.
  • Chenite, A., Buschmann, M., Wang, D., Chaput, C. & Kandani, N. 2001. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers, 46(1):39-47.
  • Cho, Y. I., No, H. K. & Meyer, S. P. 1998. Physicochemical Characteristics and Functional Properties of various Commercial Chitin and Chitosan Products. Journal of Agricultural and Food Chemistry, 46(9):3839-3843.
  • Crini, G. & Pierre-Marie, B. 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33:399-447.
  • Darder, M., Colilla, M. & Ruiz-hitzky, E. 2003. Biopolymer-Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chemical Materials, 15:3374-3780.
  • Day, R. B., Okada, M., Ito, Y., Tsukada, K., Zaghouni, H., Shibuya, N. & Stacey, G. 2001. Binding site for chitin oligosaccharides in the soybean plasma membrane. Journal of Plant Physiology, 126:1162-1173.
  • De Jong, A. J., Heidstra, R., Spaink, H. P., Hartog, M. V., Meijer, E. A., Hendriks, T., Schiavo, F. L., Terzi, M., Bisseling, T., Van Kammen, A. & De Vries, C. 1993. Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant. Journal of Plant Cell, 5:615-620.
  • Del Blanco, L. F., Rodriguez, M. S., Schluz, P. C. & Agullo, E. 1999. Influence of the deacetylation degree on chitosan emulsification properties. Colloid Polymer Science, 277:1087-1092.
  • Domszy, J. & Roberts, G. 1985. Evalution of infrared spectroscopic techniques for analysing chitosan. Macromolecules J. Chem., 186:1671 -1677.
  • Fernandez, K. S. 2004. Physicochemical and Functional Properties of Crawfish Chitosan as Affected by Different Processing Protocols. Seoul, South Korea: Seoul National University.
  • Freepons, D. 1991. Chitosan: Does it have a place in agriculture? Proc. Plant Growth Regul. Soc. Am. , 11-19.
  • Galed, G., Diaz, E., Goycoolea, F. & Heras, A. 2008. Influence of N-deacetylation conditions on chitosan production from alpha-chitin. Natural Products Communications, 3:543-550.
  • Gardner, K. H. & Blackwell, J. 1975. Refinement of the structure of beta-chitin. Bioploymers, 14:1581.
  • Grenha, A., Seijo, B & Remunan, L. C. 2002. Microencapsulated chitosan nanoparticles for lung protein delivery. Europe Journal Pharmaceutical Science, 25(4-5):427-437.
  • Hackman, R. H. 1954. Studies on chitin: I-Enzymatic degradation of chitin and chitin esters. J. Biol. Sci., 7:168.
  • Hirano, S. & Hayashi, K. 1992. Some N-acyl derivatives of O-carboxymethylchitosan. Journal of Carbohydrate in Chemistry, 225:175-178.
  • Gardner, K. H. & Blackwell, J. 1975. Refinement of the structure of beta-chitin. Bioploymers, 14:1581.
  • Jack, G. W. & Paul, A. S. 1955. Chitin and Chitosan. New York: Marcel Dekker, Inc.
  • Jeanes, A., Rogovin, P., Cadmus, M. C., Silman, R. W. & Knutson, C. A. 1974. Polysaccharide (xanthan) of Xanthomonas campestris NRRL B-1459: Procedures for culture maintenance and polysaccharide production, purification and analysis. USA: USDA Report. Jeuniaux, C. 1996. A brief survey of the early contribution of European scientists to chitin knowledge. Journal of Advances in Chitin Sciences, 1-9.
  • Johnson, E. L. & Peniston, Q. P. 1982. Utilisation of shellfish waste from chitin and chitosan production. Westport: Chemistry and Biochemistry of marine Food Products.
  • Jolles, P. & Muzzarrelli, R. A. A. 1999. Chitin and Chitinase. Switzerland: Birkhauser Verlag.
  • Junginer, H. E. & Sadeghi, A. M. M. 2014. Synthesis, Characterisation and Biomedical of Chitosan and Its Derivatives. In S.K. Kim, Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments. USA: Taylor & Francis Group.pp. 15-68
  • Kappel, L. & Gruber, S. 2020. Chapter 12 – Chitin and chitosan—important structural components in Trichoderma cell wall remodeling, New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, 243-280.
  • Kassai, M. 2008. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymer, 71:497-508.
  • Kavitha, K., Keerthi, T. S. & Tamizh, T. M. 2011. Chitosan Polymer used as Carrier in various Pharmaceutical Formulations: Brief Review. International Journal of Applied Biology and Pharmaceutical Technology, 2(2):249-258.
  • Khan, T., Peh, K. & Ch’ng, H. S. 2002. Reporting degree of deacetylation values of chitosan: The influence of analytical methods. J. Phar Pharmaceut Sci., 5(3): 205-212.
  • Kim, S. K. 2014. Chitin and Chitosan Derivatives: Advances in Drug Disocvery and Developments. USA: CRC Press: Taylor & Francis Group.
  • Knaul, J. Z., Hudson, S. M. & Creber, K. A. M. 1999. Polymer Physics. Journal of Polymer Science: Part B, 72:1079-1094. Knorr, D. (1983). Dye binding properties of chitin and chitosan. Journal of Food Science, 48:36-41.
  • Knorr, D. 1984. Use of chitinous polymers in food-a challenge for food research and development. Journal of Food Technology, 38:85-97.
  • Knorr, D. 1991. Recovery and Utilisation of Chitin and Chitosan in Food Processing Waste Management. Food Technology, 114-122.
  • Koide. 1998. Chitin-Chitosan: Properties, Benefits and Risks. Journal of Nutrient Research, 8(6):1091- 1101.
  • Kumar, M. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1):1-27. Kurita, K. 1998. Chemistry and application of chitin and chitosan. Polymer Degradation and Stability, 59:117-120.
  • Kurita, K., Ishiguro, M. & Kitajima, T. 1988. Studies on chitin: Introduction of long chain alkylidene groups and the influence of properties. International Journal of Biomacromolecules, 10:124.
  • Lamarque, G., Lucas, J. M., Viton, C. & Domard, A. 2005. Phsicochemical behaviour of homogeneous series of acetylated chitosans in aqueous solution: Role of various structural parameters. Biomacromolecules, 6:131-142.
  • Lavall, R. L., Assis, O. B. G. & Campana-Filho, S. P. 2007. Chitin from the pens of Loligo sp.: Extraction and Characterisation. Journal of Bioresource Technology, 98: 2465-2472.
  • Li, Q., Dunn, E. T., Grandmaison, E. W. & Goosen, M. F. A. 1992. Applications and properties of chitosan. Journal of Bioreactive and Compatible Polymer, 2:370-397.
  • Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., Boesel, L. F., Oliveira, J. M., Santos, T. C., Marques, M. P., Neves, N. M. & Reis, R. L. 2007. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. Journal of Revised Social Interface, 4:999-1030.
  • Marchessault, R. H., Ravenelle, F. & Zhu, X. X. 2006. Polysaccharides for drug delivery and pharmaceutical applications. American Chemical Society.
  • Marthur, N. K. & Narang, C. K. 1990. Chitin and Chitosan: Versatile polysaccharides from marine animals. Journal of Chemistry Education, 67:938.
  • Mazeau, K., Winter, W. T. & Chanz, H. 2002. Molecular and crystal structure of high-temperature polymorph of chitosan from electron diffraction data. Journal of Macromolecules, 27:7606- 7612.
  • Mima, S., Miya, M., Iwamoto, R. & Yoshikawa, S. 1983. Highly Deacetylated Chitosan and Its Properties. Journal of Applied Polymer Sciences, 28:1909-1917.
  • Minami, E., Kouchi, H., Carlson, R. W., Cohn, J. R., Kolli, V. K., Day, R. B., Ogawa, T. & Stacey, G. 1996. Cooperative action of lipo-chitin nodulation signals on the induction of the early nodulin, ENOD2, in soybean roots. Journal of Molecular Plant Microbe Interaction, 9:574- 583.
  • Moorjani, M. N., Archutha, V. & Khasim, D. I. 1975. Parameters affecting the viscosity of chitosan from prawn waste. J. Food Sci. Tecnol., 12:187-189.
  • Moore, G. K. & Roberts, G. A. F. 1978. Studies on the acetylation of Chitosan. Proceedings of the First International Conference on Chitin/Chitosan. Cambridge, MA: MIT Sea Grant Program. pp. 421-425
  • Morris, E. R., Rees, D. A., Young, G., Walkshaw, M. D. & Darke, E. 1977. Order-disorder transition for a bacterial polysaccharide in solution: A role for polysaccharide confirmation in recognition between Xanthomonas pathogen and its plant host. Journal of Molecular Biology, 110(1).
  • Muzzarelli, R. A. A. 1977. Chitin. New York: Pergamon Press Ltd.
  • No, H. K. & Meyers, S. P. 1995. Preparation and Characterisation of Chitin and Chitosan-A Review. Journal of Aquatic Food Product Technology, 4(2):27-52.
  • No, H. K., Lee, K. S. & Meyer, S. P. 2000. Correlation Between Physicochemical Characteristics and Binding Capacities of Chitosan Products. Journal of Food Science, 65(7):1134-1137.
  • No, H. K., Meyes, S. P. & Lee, K. S. 1989. Isolation and Characterisation of Chitin from Crawfish Shell Waste. Journal of Agricultural and Food Chemistry, 37(3):575-579.
  • No, H. K. & Lee, M. Y. 1995. Isolation of Chitin from Crab Shell Waste. Journal Korean Soc. Food Nutrition, 24(1):105-113.
  • No, H. K. & Meyer, S. P. 1992. Utilisation of Crawfish Processing Wastes as Carotenoids, Chitin and Chitosan Sources. Journal of Korean Society Food Nutrition, 21(3), 319-326.
  • No, H. K. 2000. Application of Chitosan for Treatment of Wastewaters. Rev. Environ. Contam. Toxicol., 163:1-28. No, H. K., Lee, K. S. & Meyer, S. P. 2000. Correlation Between Physicochemical Characteristics and Binding Capacities of Chitosan Products. Journal of Food Science, 65(7)”1134-1137.
  • No, H. K., Cho, Y. I., Kim, H. R. & Meyer, S. P. 2000. Effective Deacetylation of Chitin under Conditions of 15 psi/121degree celcius. Journal od Agriculture and Food Chemistry, 48(6):2625-2627.
  • No, H. K., Kim, S. J. & Meyer, S. P. 1999. Effects of Physical and Chemical Treatments on Chitosan Viscosity. Journal of Korean Society For Chitin and Chitosan, 4(4): 177-183.
  • Nwe, N., Furuike, T. & Hiroshi, T. 2009. Journal of Materials in Chemistry, Materials and Bioengineering, 2(2):374-388. Oskargata. 2014. History of Chitin and Chitosan. USA: Primex. Retrieved December 21, 2015, from http://www.primex.is/AboutUs/The-History-of-Chitin/ Peniston, Q. P. & Johnson, E. L. 1980. Process for the manufacture of chitosan. USA patent, 4(195):175.
  • Pillai, C. K. S., Willi, P. & Chandra, P. S. 2009. Chitin and Chitosan Polymers: Chemistry, solubility and fiber formation. Journal of Progress in Polymer Science, 34:641-678.
  • Ramos, V. M., Rodriguez, N. M., Heras, A. & Agullo, E. 2003. Modified chitosan carrying phosphoric and alkyl groups. Carbohydrate Polymer, 51:425-429.
  • Ravi Kumar, M. N. 2000. A review of chitin and chitosan applications. Reactive Functional Polymers, 46(1):1-27.
  • Rege, P. R. & Block, L. H. 1999. Chitosan processing: Influence of process parameters during acidic and alkaline hydrolysis and effect of the processing sequence on the resultant chitosan’s properties. Carbohydrate Research, 321(3-4):235-245.
  • Rigby, G. W., Park, E. D., Godber, J. S. & Culley, D. D. 1936. Chemical products and process of preparing the same. USA: USA patent. Rinaudo, M. 2006. Chitin and Chitosan: Properties and applications. Prog. Plym. Sci., 31:603-632.
  • Roberts, G. A. & Domszy, J. G. 1982. Determination of the viscometric constants for chitosan. International Journal of Biological Macromolecules, 4(6):374-377.
  • Roller, S. & Covill, N. 1999. The antifungal properties of chitosan in laboratory media in apple juice. International Journal of Food Microbiology, 47:67-77.
  • Rout, S. K. 2001. Physicochemical, Functional, and Spectroscopic analysis of crawfish chitin and chitosan as affected by process modification. Dissertation.
  • Rudall, K. M. & Kechington, W. 1973. The Chitin System. Journal of Biology Revised, 48:597-633.
  • Ruiz-Herrera, J. 1978. The distribution and quantitative importance of chitin in fungi. In R. A. Muzzarrelli (Ed.), Proceedings of the FIrst International Conference on Chitin/Chitosan (p. 11). Cambridge, MA: MIT Sea Grant Program.
  • Sabnis, S. & Block, L. H. 1997. Improved infrared spectroscopic method for the analysis of degree of Ndeacetylation of chitosan. Polymer Bulletin, 39:67-71.

    Schiffman, J. D. & Schauer, C. L. 2009. Solid-state characterisation of [alpha]-chitin from Vanessa cardui Linnaeus wings. Journal of Material Science Chemical Engineering, 29:1370-1374.

  • Setha, S., Kanlayanarat, S. & Gemma, H. 2000. Effect of various molecular weight of chitosan coating on the ripening of caven dish banana. Bangkok, Thailand: Division of Postharvest Technology, King MoongKurt’s university.
  • Shahidi, F. 1995. Role of chemistry and biotechnology in value-added utilisation of shellfish processing discards. Can. Chemistry News, 47, 25-29.
  • Shen, F., Zhong, H., Ge, W., Ren, J. & Wang, X. 2020. Quercetin/chitosan-graft-alpha lipoic acid micelles: A versatile antioxidant water dispersion with high stability, Carbohydrate Polymers, 234, 115927.
  • Sikorski, P., Hori, R. & Wada, M. 2009. Revisit of alpha-chitin crystal structure using high resolution Xray diffraction data. Journal of Biomacromolecules, 10:1100-1105.
  • Smith, J. P., Simpson, B. K. & Morris, J. 1994. Control of psychotropic pathogens in fresh/processed meat and fish products packaged under modified atmosphere. Faculty of Agriculture and Environmental Science, H9X3V9. Quebec: Macdonald Campus of McGill University . Stephen, A. M. 1995. Food Polysaccharides and Their Applications. USA: Marcel Dekker, Inc. Steve, L. T. 2005. Advances in Food and Nutrition Research (Volume 49). USA: Elsevier Academic Press. Struszcyzk, M. H. 2002. Chitin and chitosan – Part 1: Properties and Productions. Polimery, 47:316-325.
  • Synowiecki, J & Al-Khateeb, N. A. 2003. Production, properties and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutrition, 43:145-171. Takai, M., Shimizu, Y., Hayashi, J., Uraki, Y. & Tokuro, S. 1989. NMR and X-ray studies of chitin and chitosan in solid state. In G. A. Skjak-Braek, Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications (p. 431). New York: Elsevier Applied Science.
  • Tan, S. C., Tan, T. K., Wong, S. M. & Khor, E. 1996. The chitosan yield of Zygomycetes at their optimum harvesting time. Carbohydrate Polymer, 30:239-242. Tan, W., Zhang, J., Mi, Y., Dong, F., Li, Q. & Guo, Z. 2020. Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt via azide-alkyne click reaction, International Journal of Biological Macromolecules, 165, Part B, 1765-1772.
  • Tharanathan, R. N. & Kittur, F. S. 2003. Chitin: The undisputed biomolecular of great potential. Critical Review of Food Science Nutrition, 17(1):27-31.
  • Tokura, S. & Azuma, I. 1990. Chitin Derivatives in Life Science. Japan: Japanese Society for Chitin and Chitosan. Tolaimate, A., Debrieres, J., Rhazi, M., Alagui, A., Vincendon, M. & Vottero, P. 2000. On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer, 41:2463-2469.
  • Uthairatanakij, A., Teixera da Silva, J. A. & Obsuwan, K. 2007. Chitosan for improving orchid production and quality. Orchid Science and Biotechnology, 1:1-5.
  • Venkatesan, J. & Kim, S. K. 2010. Chitosan Composites for Bone Tissue Engineering-An Overview. Marine Drugs, 8:2252-2266.
  • Zhang, H., Renping, L. & Weimin, L. 2011. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review. International Journal of Molecular Sciences, 12:917-934.
  • Zikaris, J. P. 1984. Chitin, Chitosan and Related Enzymes. Orlando, FL, USA: Academic Press.

Download Full Paper Here (Right-Click and Save As)

ESTIMATING MANGROVE ABOVE-GROUND BIOMASS (AGB) IN SABAH, MALAYSIA USING FIELD MEASUREMENTS, SHUTTLE RADAR TOPOGRAPHY MISSION AND LANDSAT DATA

Charissa J. Wong1, Daniel James1, Normah A. Besar1 and Mui-How Phua1*

1Faculty of Science and Natural Resources,
Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah, Malaysia

Corresponding author; Mui-How Phua, Telephone Number: +60 (0)88 320000,
Email; pmh@ums.edu.my

 

ABSTRACT. Mangroves are one of the most productive forest ecosystems and play an important role in carbon storage. We examined the use of Shuttle Radar Topography Mission (SRTM) data to estimate mangrove Above-ground Biomass (AGB) in Sabah, Malaysia. SRTM-DEM can be considered as Canopy Height Model (CHM) because of the flat coastal topography. Nevertheless, we also introduced ground elevation correction using a Digital Terrain Model (DTM) generated with GIS and coastal profile data. We mapped the mangrove forest cover using Landsat imagery acquired in 2015 with the supervised classification method (Kappa coefficient of 0.81). Regression analyses of field AGB and the CHMs resulted in an estimation model with the corrected CHM as the best predictor (R2: 0.73) and cross-validated Root Mean Square Error (RMSE) was 19.70 Mg ha-1 (RMSE%: 11.60). Our study showed Sabah has a mangrove cover of 268,631.91 ha with a total AGB of 44,163,207.07 Mg in 2015. This substantial amount of carbon storage should be monitored over time and managed as part of the climate change mitigation strategy.

KEYWORD. Mangroves, SRTM-DEM, Landsat, Above-ground Carbon, Borneo.

 

REFERENCES

  • Aslan, A., Rahman, A.F., Warren, M.W. and Robeson, S.M. (2016). Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sensing of Environment 183:65-81.
  • Basuki, T.M., Van Laake, P.E., Skidmore, A.K. and Hussin, Y.A. (2009). Allometric equations for estimating the aboveground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257(8):1684-1694.
  • Chandra, I.A., Seca, G. and Abu Hena, M.K. (2011). Aboveground Biomass production of Rhizophora apiculata blume in Sarawak mangrove forest. American Journal of Agricultural and Biological Sciences 6(4):469-474. DHI Water and Environment. (2005). Sabah shoreline management plan.
  • DHI Water and Environment, Kota Kinabalu. Food and Agriculture Organization of the United Nations (FAO). (2007). Brief on national forest inventory (NFI): Malaysia. FAO, Rome.
  • Faridah-Hanum, I., Kudus, K.A. and Saari, N.S. (2012). Plant diversity and biomass of Marudu Bay mangroves in Malaysia. Pakistan Journal of Botany 44:151-156.
  • Fatoyinbo, T.E., Simard, M., Washington-Allen, R.A. and Shugart, H.H. (2008). Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. Journal of Geophysical Research 113:G02S06.
  • Fatoyinbo, T.E. and Amstrong, A.H. (2010). Remote Characterisation of Biomass Measurements: Case Study of Mangrove Forests. In Momba MNB (ed) Biomass. IntechOpen, Sciyo, pp 65-78.
  • Fatoyinbo, T.E., Feliciano, E.A., Lagomasino, D., Lee, D.K. and Trettin, C. (2018). Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi Delta. Environmental Research Letters 13:025012.
  • Fayad, I., Baghdadi, N., Guitet, S., Bailly, J.S., Herault, B., Gond, V., El Hajj, M. and Minh, D.H.T. (2016). Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. International Journal of Applied Earth Observation and Geoinformation 52:502-514.
  • Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J. and Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20:154-159.
  • Kanniah, K.V., Sheikhi, A., Cracknell, A.P., Hong, C.G., Kian, P.T., Chin, S.H. and Rasli, F.N. (2015). Satellite images for monitoring mangrove cover changes in a fast growing economic region in Southern Peninsular Malaysia. Remote Sensing 7:14360-14385.
  • Kauffman, J.B., Heider, C., Cole, T.G., Dwire, K.A. and Donato, D.C. (2011). Ecosystem carbon stocks of Micronesian Mangrove Forests. Wetlands 31:343-352.
  • Kirui, K.B., Kairo, J.G., Bosire, J., Viergever, K.M., Rudra, S., Huxham, M. and Briers, R.A. (2013). Mapping of mangrove forest land cover change along the Kenya coastline using Landsat Imagery. Ocean Coastal and Management 83:19-24.
  • Kugler, F., Schulze, D., Hajnsek, I. Papathanassiou, K.P. (2014). TanDEM-X Pol-InSAR performance for forest height estimation. IEEE Transactions on Geoscience and Remote Sensing.
  • Lagomasino, D., Fatoyinbo, T., Lee, S., Feliciano, E., Trettin, C. and Simard, M. (2016). A comparison of mangrove canopy height using multiple independent measurements from land, air and space. Remote Sensing 8:327.
  • Pham, L.T.H. and Brabyn, L. (2017). Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS Journal of Photogrammetry and Remote Sensing 128:86-97.
  • Sabah Forestry Department (SFD). (2016). Sabah Forestry Department Annual Report 2015. Sabah Forestry Department, Sandakan ISSN 1823-0954.
  • Saenger, P. and Snedaker, S.C. (1993). Pantropical trends in mangrove aboveground biomass and annual litterfall. Oecologia 96(3):293-299.
  • Shapiro, A.C., Trettin, C.C., Kuchly, H., Alavinapanah, S. and Bandeira, S. (2015). The mangroves of the Zambezi delta: increase in extent observed via satellite from 1994-2013. Remote Sensing 7:16504-16518.
  • Simard, M., Zhang, K., Rivera-Monroy, V.H., Ross, M.S., Ruiz, P.L., Castaneda-Moya, E., Twilley, R.R., and Rodriguez, E. (2006). Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogrammetric Engineering and Remote Sensing 72(3):299- 311.
  • Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V.H., Castaneda-Moya, E., Thomas, N. and Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 12:40-45.
  • Stringer, C.E., Trettin, C.C., Zarnoch, S.J. and Tang,W. (2015). Carbon stocks of mangroves within the Zambezi River Delta, Mozambique. Forest Ecology and Management 354:139-148.
  • Zhu, Z. and Woodcock, C.E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment 118:83-94.

Download Full Paper Here (Right-Click and Save As)

QUANTIFYING ABOVEGROUND BIOMASS OVER 50-HA TROPICAL FOREST DYNAMIC PLOT IN PASOH, MALAYSIA USING LIDAR AND CENSUS DATA

Hamdan Omar*, Muhamad Afizzul Misman and Yao Tze Leong

Forestry and Environment Division,
Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia

Corresponding author : Hamdan Omar, Phone No.; +603-62797200,
Email : hamdanomar@frim.gov.my

ABSTRACT. Airborne light detection and ranging (LiDAR) instruments have been widely used for quantification of forest biomass. This study investigated the relationships between LiDAR data and aboveground biomass (AGB). The study area is located at the 50-ha dynamic plot in a primary forest area of the Pasoh Forest Reserve, a lowland dipterocarp forest, a type of evergreen tropical moist forest. A number of variables have been produced from the LiDAR metrics. These variables were correlated with AGB that were derived from census data. The study found that the CHM and a few matrices are the best predictors for AGB and therefore used for the estimation of AGB in the entire study area. The estimated AGB ranged from 52 to 718 Mg ha-1, with a root mean square error (RMSE) of about 59 Mg ha-1. The study suggests that the AGB estimates produced by this study are the most accurate – with an accuracy of 83% based on the mean absolute percentage error (MAPE) – as compared to other remotely-sensed based estimates in the study area.

KEYWORD. Center for Tropical Forest Science (CTFS); 50-ha dynamic plot; LiDAR; biomass

REFERENCES

  • Ashton, P.S., Okuda, T. and Manokaran, N. (2003). Pasoh Research, Past and Present. In Pasoh: Ecology and natural history of a Southeast Asian lowland tropical rain forest. Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S.C., Ashton, P.S., Eds.; Springer: Tokyo, Japan. 1–13.
  • Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martinez-Yrizar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pelissier, R., Ploton, P., Ryan, C.M., Saldariagga, J.G. and Vielledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10): 3177-3190.
  • Chen, Q., (2013). Lidar remote sensing of vegetation biomass. Remote Sensing of Natural Resources. 399–420.
  • Chirici, G., McRoberts, R.E., Fattorini, L., Mura, M. and Marchetti, M. (2016). Comparing echobased and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework. Remote Sensing of Environment174: 1–9.
  • Condit, R. 1998. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a comparison with other plots. Springer: University of Michigan, USA.
  • Dong, P. and Chen, Q. (2018). LiDAR Remote Sensing and Applications.
  • Taylor & Francis, Boca Raton, FL. Drake, J.B., Dubayah, R.O., Knox, R.G., Clark, D.B. and Blair, J.B. (2002). Sensitivity of largefootprint LiDAR to canopy structure and biomass in a neotropical rainforest. Remote
    Sensing of Environment, 81: 378–392.
  • Frazer, G.W., Magnussen, S., Wulder, M.A. and Niemann, K.O. (2011 ). Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR derived estimates of forest stand biomass. Remote Sensing of Environment, 115: 636– 649.
  • Frolking, S., Palace, M.W., Clark, D.B., Chambers, J.Q., Shugart, H.H. and Hurtt, G.C. (2009). Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research: Biogeosciences, 114: G00E02.
  • Hamdan, O., Muhamad Afizzul, M. and Abd Rahman, K. (2017). Synergetic of PALSAR-2 and Sentinel-1A SAR Polarimetry for Retrieving Aboveground Biomass in Dipterocarp Forest of Malaysia. Applied Sciences, 7(675).
  • Hamdan, O. and Muhamad Afizzul, M. (2018). Time series maps of aboveground biomass in dipterocarps forests of Malaysia from PALSAR and PALSAR-2 polarimetric data. Carbon Balance and Management, 13:19.
  • Hamdan Omar, Muhamad Afizzul M. and Y.T. Leong Houghton, R.A., Hall, F. and Goetz, S.J. (2009). Importance of biomass in the global carbon cycle. Journal of Geophysical Research, 114: G00E03.
  • Kochummen, K.M., LaFrankie, J.V. and Manokaran, N. (1990). Floristic Composition of Pasoh Forest Reserve a lowland rainforest in Peninsular Malaysia. Journal of Tropical Forest Science, 3: 1–13.
  • Lefsky, M.A., Cohen, W.B., Harding, D.J., Parker, G.G., Acker, S.A. and Gower, S.T. (2002). LiDAR remote sensing of aboveground biomass in three biomes. Global Ecology and Biogeography, 11: 393–399.
  • Lu, D., Chen, Q., Wang, G., Liu, L., Li, G. and Moran, E. (2016). A survey of remote sensing based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9: 63–105.
  • Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., Zhang, M., Vaglio Laurin, G. and Saah, D. (2012). Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. International Journal of Forestry Research, Article ID 436537.
  • Magnussen, S., Næsset, E., Kändler, G., Adler, P., Renaud, J.P. and Gobakken, T. (2016). A functional regression model for inventories supported by aerial laser scanner data or photogrammetric point clouds. Remote Sensing of Environment, 184: 496–505.
  • Mallet, C. and Bretar, F. (2009). Full-waveform topographic LiDAR: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64: 1–16.
  • Manokaran, N. and LaFrankie, J.V. (1990). Stand structure of Pasoh Forest Reserve, a lowland rainforest in Peninsular Malaysia. Journal of Tropical Forest Science, 3: 14–24.
  • Manokaran, N., LaFrankie, J.V., Kochummen, K.M., Quah, E.S., Klahn, J., Ashton, P.S. and Hubbell, S.P. (1990). Methodology for 50-ha research plot at Pasoh Forest Reserve. FRIM Research Pamphlet, No. 104. FRIM: Kepong, Malaysia.
  • Manokaran, N., Quah, E.S., Ashton, P.S., LaFrankie, J.V., Nur Supardi, M.N., Wan Shukri, W.A. and Okuda, T. (2003). Pasoh Forest Dynamic Plot, Peninsular Malaysia. In Tropical  Forest Diversity and Dynamism, findings from a Large-Scale Plot Network. (Eds. Losos, E.C. and Leigh, Jr. E.G.). The University of Chicago Press: Chicago, USA.
  • McGaughey, R. (2009). FUSION/LDV: Software for LiDAR Data Analysis and Visualization. US Department of Agriculture, Forest Service, Pacific Nortwest Research Station.
  • Reutebuch, S.E., McGaughey, R.J. and Strunk, J.L. (2010). Sherman Pass LIDAR Forest Inventory Project. United States Department of Agriculture, Forest Service. Pacific Northwest Research Station. 80.
  • Roussel, J.R., Caspersen, J., Béland, M., Thomas, S. and Achim, A. (2017). Removing bias from LiDAR-based estimates of canopy height: Accounting for the effects of pulse density and footprint size. Remote Sensing of Environment, 198: 1–16.
  • Wan Shafrina, W.M.J., Woodhouse, I.H., Silva, C.A., Omar, H. and Hudak, A.T. (2017). Modelling Individual Tree Aboveground Biomass Using Discrete Return LiDAR in Lowland Dipterocarp Forest of Malaysia. Journal of Tropical Forest Science 29(4): 465– 484.
  • Wan Shafrina, W.M.J., Woodhouse, I.H., Silva, C.A., Omar, H., Khairul Nizam, A.M., Hudak, A.T., Klauberg, C., Cardil, A. and Mohan, M. (2018). Improving Individual Tree Crown Delineation and Attributes Estimation of Tropical Forests Using Airborne LiDAR Data. Forests. 9(759).
  • Wyatt-Smith, J. (1987). Manual of Malayan silviculture for inland forest, Part 3-Chapter 8. Red meranti-keruing forest. FRIM Research Pamphlet No. 101; FRIM: Kepong, Malaysia.
  • Zolkos, S.G., Goetz, S.J. and Dubayah, R. (2013). A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128: 289–298.

Download Full Paper Here (Right-Click and Save As)

TOURIST SATISFACTION AT NATURE-BASED TOURISM DESTINATION AROUND KOTA KINABALU, SABAH

Hamimah Talib1*
1 Faculty of Science and Natural Resources,
Universiti Malaysia Sabah,
Kota Kinabalu, Sabah, Malaysia.

Corresponding author; Hamimah Talib, Cell; +6016 9980701, Email; hamima@ums.edu.my

ABSTRACT. Kota Kinabalu, Sabah has been famed as Nature Resort City where nature-based destinations in and around the city have been the major tourist attractions. Nonetheless, the question whether the visitors are satisfied with their experience at the major nature-based tourism destination or otherwise is still vague. The purpose of this study is to understand the recreational experience and satisfaction of tourist in selected nature-based tourism sites in Kota Kinabalu, Sabah. A mixedmethod approach incorporating quantitative data derived using Driver’s Recreation Experience Preference Scale, and qualitative data using Herzberg’s Critical Incident Technique were deployed. The sampling technique used in this study was purposive non-probability sampling with the participation of 240 tourists. Factor analysis was run on the quantitative dataset to derive the major outcome which is the set of profile on tourist recreational experience. While content analysis was conducted on the qualitative dataset to derive explanation for tourist satisfaction/dissatisfaction. Triangulation between the two types of datasets strengthens the major finding which is the tourist satisfaction in nature-based tourism destination around Kota Kinabalu, Sabah. The finding of this study is crucial for satisfaction enhancement and critical for identification of areas to be improved, subsequently solutions to be recommended.

KEYWORDS. Tourist Satisfaction, Nature-Based Tourism

 

REFERENCES

  • Ceballos-Lascurain, H. 1996. Tourism, Eco-Tourism and Protected Areas. IUCN. The World Conservation Union. Gland, Switzerland.
  • Chan, J.K.L. (2006). Herzberg’s Dual Factor Theory to Tourism Experiences: Satisfiers and Dissatisfiers. Asia-Euro Tourism, Culture and Gastronomy Conference 2006: West meets East: A Recipe of Success in this Era of Globalization? 9-10 November 2006, Taylors College, School of Hospitality and Tourism, Petaling Jaya, Malaysia.
  • Chan, J.K.L., and Baum, T. (2007). Ecotourists’ Perception of Ecotourism Experience in Lower Kinabatangan, Sabah, Malaysia. Journal of Sustainable Tourism, Vol 5 Issue 15, 2007.
  • Coakes, S.J. and Steed, L. (2007) SPSS: Analysis without Anguish Using SPSS Version 14.0 for Windows . Australia: John Wiley & Sons Australia, Ltd.
  • Dodds, R. and Butler, R. (2010). Barriers to implementing sustainable tourism policy in mass tourism destination. Tourismos, Vol.5, No.1, pp.35-54.
  • Driver, B.L., Tinsley, H.E.A., and Manfredo, M.J. (1991). The Paragraph About Leisure and Recreation Experience Preference Scales: Results from Two Inventories Designed to Assess the Breadth of the Perceived Psychological Benefits. In B.L.
  • Driver P.J. Brown, and G.L. Peterson (Eds), Benefits of Leisure (pp.263-286). State College, PA: Venture Publishing.
  • Herzberg, F. (1972). Work and the nature of man. Cleveland, OH: World Publishing.
  • Patton, M.Q. (2002) Qualitative Research and Evaluation Methods. Thousand Oaks, CA: Sage. Pearce, P.L. (2005). Tourist Behavior: Themes and Conceptual Schemes. Viva Books Private Limited, Ansari Road, New Delhi.
  • Pine, B.J. & Gilmore, J.H. 1999. The Experience Economy: Work is Theatre and Every Business A Stage. Boston, Massachussets, Harvard Business School Press.
  • Talib, H. (2011). Tropical forest recreation: Visitors’ experience and satisfaction in Kinabalu Park, Sabah. Universiti Malaysia Sabah.

Download Full Paper Here (Right-Click and Save As)

TOURIST SATISFACTION DIMENSION IN KINABALU PARK, SABAH, MALAYSIA

Timothy Ajeng Mereng1, Hamimah Talib1* and Jennifer Chan Kim Lian2
1 Forestry Complex, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
2 Borneo Tourism Research Centre, Faculty of Business, Economics and Accountancy, Universiti Malaysia Sabah

Corresponding author; Hamimah Talib, Cell; +6016 9980701, Email; hamima@ums.edu.my

ABSTRACT. This paper aims to identify the tourist satisfaction dimensions in Kinabalu Park as a World Heritage Site, to come out with the tourist satisfaction indicators for responsible rural tourism framework at Kinabalu Park, Sabah, Malaysia, in terms of satisfaction and dissatisfaction dimension. One of the data sources to achieve this aim is the in-depth interview session with the tourist in Kinabalu Park, specifically the mountain climbers. The interview was conducted with Herzberg’s Critical Incident Technique (CIT), which is a method that asks the respondents to recall their exceptionally good feeling as well as their exceptionally bad feeling during their experience in Kinabalu Park. The data were analyzed thematically based on Driver’s Recreation Experience Preference (REP) scale to identify the tourists’ satisfaction dimension. Our study found that “scenery enjoyment” was the most prevalent domain for a satisfying experience or the source of good feeling. Along with the “scenery enjoyment”, there were other three emerging experience domains that could contribute to understanding the tourist satisfaction dimensions in Kinabalu Park.

KEYWORDS. Tourist Satisfaction Dimension, Kinabalu Park

 

REFERENCES

  • Alegre, J. and Garau, J. (2010). Tourist Satisfaction and Dissatisfaction. Annals of Tourism Research, Vol. 37, No. 1, pp. 52-73.
  • Driver, B.L. (1983). Master list of items for Recreation Experience Preference scales and domains. Unpublished Document. USDA Forest Service, Fort Collins, CO: Rocky Mountain Forest and Range Experiment Station.
  • Faleye, O., Hoitash, R. and Hoitash, U. (2000), Improving your measurement of customer satisfaction. A guide to creating, conducting, analyzing, and reporting customer satisfaction measurement programs, Journal of the Academy of Marketing Science, Vol. 101, No. 2, p. 490.
  • Fuchs, M. and Weiermair, K. (2003). New perspectives of satisfaction research in tourism destinations. Tourism Review, 58(3), 6–14.
  • Fuller, J. and Matzler, K. (2007). Customer delight and market segmentation: An application of the three-factor theory of customer satisfaction on life style groups. Tourism Management, 29(1).
  • Timothy Ajeng Mereng, Hamimah Talib and Jennifer Chan Kim Lian Herzberg, F.W. (1966). Work and the nature of man. Cleveland: World Publishing. Kano, N. (1984). Attractive quality and must-be quality. Journal of the Japanese Society for Quality Control, 1(4), 39-48.
  • Kano, N., Seraku, N., Takahashi, F. and Tsuji, S. (1984). Attractive quality and must-be quality. Quality: The Journal of the Japanese Society for Quality Control, 14(April), 39-48.
  • Kitayama, K. (1991 ). Vegetation of Mount Kinabalu Park Sabah, Malaysia: A Project Paper. Protected Areas and Biodiversity Environment and Policy Institute.
  • Knopf, R.C. (1976). Relationships between desired consequences of recreation engagements and conditions in home neighborhood environments. Unpublished doctoral dissertation, University of Michigan, Ann Arbor.
  • Knopf, R.C. (1983). Recreational needs and behavior in natural settings. In J. F. Wohlwill (Ed.), Behavior and the Natural Environment, pp. 205-240. New York: Plenum Publishing.
  • Knopf, R.C., Driver, B.L. and Bassett, J.R. (1973). Motivations for fishing. In Transactions of the 28th North American Wildlife and Natural Resources Conference, pp. 191 -204.Wash., DC: Wildlife Management Institute.
  • Knopf, R.C., Peterson, G.L. and Leatherberry, E.C. (1983). Motives for recreational river floating: Relative consistency across settings. Leisure Sciences, 5(3), 231 -25
  • Lo, M.C., Songan, P., Mohamad, A.A. and Yeo, A.W. (2011). Rural destination and tourists’ satisfaction, Journal of Services Research. Pp. 58-74.
  • Matzler, K., Sauerwein, E. and Heischmidt, K. (2003). Importance-performance analysis revisited: The role of the factor structure of customer satisfaction. The Service Industries Journal, 23(2), 112–129.
  • Mereng, T.A., Talib, H. and Chan, J.K.L. (2016). Tourist Satisfaction Indicators for Responsible Rural Tourism Framework: A Case of Kinabalu National Park. Proceeding of the International Social Sciences Academic Conference (ISSAC 2016), ISBN 978-967-13637-5- 1.
  • Mittal, V., Ross, W.T. and Baldasare, P.M. (1998). The asymmetric impact of negative and positive attribute-level performance on overall satisfaction and repurchase intentions. Journal of Marketing, 62(1), 33–47.
  • Phillipps, A. and Liew, F. (2005). Globetrotter Visitor’s Guide – Kinabalu Park, New Holland Publishers (UK) Ltd. Slevitch, L. and Oh, H. (2010), Asymmetric relationship between attribute performance and customer satisfaction: A new perspective, International Journal of Hospitality Management, Vol. 29, No. 4, pp. 559-569.
  • Talib, H., Chan, J.K.L. and Mereng, T.A. (2014). Sustaining Tourist Satisfaction in Mt. Kinabalu, Sabah, EDP Sciences, SHS web of Conferences, Vol.12, 2014, http://dx.doi.org/10.1051/shsconf/20141201024, 19 Nov.2014.
  • Tontini, G. and Silveira, A. (2007), Identification of satisfaction attributes using competitive analysis of the improvement gap, International Journal of Operations Production Management, Vol. 27, No. 5, pp. 482-500.
  • Walker, R. (1985). An Introduction to Applied Qualitative Research, in R. Walker (ed) Applied Qualitative Research. Vermont, Gower Publishing. World Tourism Organization (WTO). (1985). Identification and Evaluation of those Components of Tourism Satisfaction and which can be Regulated and State Measures to Ensure Adequate Quality of Tourism Services. World Tourism Organisation, Madrid.

Download Full Paper Here (Right-Click and Save As)

Volume 41 (Issue 1), March 2020

A REVIEW ON CONSTRUCTED GENETIC CASSETTES IN YEAST FOR RECOMBINANT PROTEIN PRODUCTION
– Sk Amir Hossain1*, Chanchal Mandal1, Toufiq Ahmed1 & S.M Rifat Rahman1

HEAT CONTENT AND BURNING TIME OF TROPICAL PEAT
– 
Dayang Nur Sakinah Musa*, Rebecca Mishallyne Afat, Melissa Sharmah Gilbert, Kamlisa Uni Kamlun

THE OUTLOOK OF RURAL WATER SUPPLY IN DEVELOPING COUNTRY : REVIEW ON SABAH, MALAYSIA
- Rosalam Sarbatly1, Farhana Abd Lahin2*, Chel-Ken Chiam3

ABOVE AND BELOW-GROUND CARBON STOCK IN Acacia mangium STAND IN SABAH
– Tan Chun Hung 1 , Normah Awang Besar 1* , Mohamadu Boyie Jalloh 2 , Maznah Mahali 1 , Nissanto Masri 3

PHYTOCHEMICAL AND ANTIMICROBIAL INVESTIGATION AND COMPARISON BETWEEN YOUNG AND MATURE Psidium guajava LEAVES EXTRACT
- TOMMY NATHANIEL NASIRI, SURAYA ABDUL SANI, RAHMATH ABDULLAH, AINOL AZIFA, MOHD FAIK, ROSLINA JAWAN, AND MOHD KHALIZAN SABULLAH*

CHARACTERIZATION OF OIL PALM LEAF PAPER WITH STARCH AS BINDER
- Sabrina Soloi1*, Adib Afifi Mohammad1

Download FULL Journal HERE

 

 

 

A REVIEW ON CONSTRUCTED GENETIC CASSETTES IN YEAST FOR RECOMBINANT PROTEIN PRODUCTION

Sk Amir Hossain1 *, Chanchal Mandal1, Toufiq Ahmed1 & S.M Rifat Rahman1
1Biotechnology and Genetic Engineering discipline, Khulna University, Khulna, Bangladesh
* Corresponding author: isti_99@yahoo.com

ABSTRACT. Conventional methods for covalent immobilization of proteins often result in denaturation due to chemical treatments. However, proteins immobilized at microbial cell surfaces by regular cellular processes could be bound covalently to the cell wall without being exposed to chemical treatment. Yeasts display systems provide several advantages over bacterial system. The secretory and post-translational pathway in yeast, are similar to those of higher eukaryotes which established them as better hosts for production of eukaryotic proteins. The expression of recombinant proteins immobilized at the cell surface ofSaccharomyces cerevisiae has now been practiced for the last two decades. Although different surface display systems have been made for specific purposes, the system with broad applicability has not been developed so far. Most of the vectors constructed for surface display of recombinant proteins in yeast so far were created for single-use in particular case with ubiquitous laboratory plasmids that were not optimized for this purpose. Therefore, the construction of a new set of plasmids with optimized genetic cassette is still in demand. An optimized genetic cassette should allow easy and simple insertion of any gene of interest, with regulated and easily controlled expression level. In this review, we have tried to make a detailed study on all the genetic components used in successful yeast display systems till now in order to provide a good knowledge which will help the future researchers of this field to design an optimized genetic cassette which would be used for industrial scale application.

KEYWORDS: Yeast display system, yeast cell wall proteins, genetic cassette and recombinant protein.

  • REFERENCE
    Andrés, I., Gallardo, O., Parascandola, P., Javier Pastor, F.I. &Zueco, J. 2005. Use of the cell wall protein Pir4 as a fusion partner for the expression of Bacillus sp. BP‐7 xylanaseA in Saccharomyces cerevisiae. Biotechnology and bioengineering 89(6): 690-697.
  • Boder, E.T. & Wittrup, K.D. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nature biotechnology 15(6): 553.
  • Boder, E.T. & Wittrup, K.D. 2000. Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430-344.
  • Boder, E.T., Bill, J.R., Nields, A.W., Marrack, P.C. & Kappler, J.W. 2005. Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide. Biotechnology and bioengineering 92(4): 485-491.
  • Cabib, E., Roberts, R. & Bowers, B. 1982. Synthesis of the yeast cell wall and its regulation. Annual review of biochemistry 51(1): 763-793.
  • Caro, L.H.P., Tettelin, H., Vossen, J.H., Ram, A.F., Van Den Ende, H. & Klis, F.M. 1997. In silicio identification of glycosyl phosphatidylinositol anchored plasma membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13(15): 1477-1489.
  • Chao, G., Cochran, J.R., & Wittrup, K.D. 2004.Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. Journal of molecular biology 342(2): 539-550.
  • Chen, I., Dorr, B.M. & Liu, D.R. 2011.A general strategy for the evolution of bond-forming enzymes using yeast display.Proceedings of the National Academy of Sciences108(28): 11399- 11404.
  • Cherf, G.M. & Cochran, J.R. 2015.Applications of yeast surface display for protein engineering in yeast surface display.Methods Mol Bio 1319:155-75.
  • Cho, B. K., Kieke, M. C., Boder, E. T., Wittrup, K. D., &Kranz, D. M. (1998). A yeast surface display system for the discovery of ligands that trigger cell activation. Journal of immunological methods, 220(1-2), 179-188. Colby, D.W.,
  • Garg, P., Holden, T., Chao, G., Webster, J.M., Messer, A., …& Wittrup, K.D. 2004. Development of a human light chain variable domain (VL) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. Journal of molecular biology 342(3): 901 -912.
  • Colby, D.W., Kellogg, B.A., Graff, C.P., Yeung, Y.A., Swers, J.S. & Wittrup, K.D. 2004.Engineering antibody affinity by yeast surface display.Methods Enzymol 388: 348- 358.
  • Ecker, M., Deutzmann, R., Lehle, L., Mrsa, V. & Tanner, W. 2006.Pir proteins of Saccharomyces cerevisiae are attached to β-1, 3-glucan by a new protein-carbohydrate linkage. Journal of Biological Chemistry 281(17): 11523-11529.
  • Feldhaus, M.J., Siegel, R.W., Opresko, L.K., Coleman, J.R., Feldhaus, J.M.W., Yeung, Y.A. , …& Graff, C. 2003. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nature biotechnology 21(2): 163.
  • Furukawa, H., Tanino, T., Fukuda, H. & Kondo, A. 2006. Development of novel yeast cell surface display system for homo oligomeric protein by coexpression of native and anchored subunits. Biotechnology progress 22(4): 994-997.
  • Gai, S.A. & Wittrup, K.D. 2007. Yeast surface display for protein engineering and characterization.
    Current opinion in structural biology 17(4): 467-473. Han, T., Sui, J., Bennett, A., Liddington, R.C., Donis, R.O., Zhu, W. & Marasco, W.A. 2012. Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem biophys res commun 409(2): 253-259.
  • Hossain, S.A. 2018. Surface display of heterologous proteins in the yeast cell wall and their application in biotechnology. Doctoral dissertation, Faculty of food technology and biotechnology, University of Zagreb, Croatia.
  • Jarjour, J., West-Foyle, H., Certo, M.T., Hubert, C.G., Doyle, L., Getz, M.M., …& Scharenberg, A.M. 2009. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic acids research 37(20): 6871 -6880.
  • Jarjour, J., West-Foyle, H., Certo, M.T., Hubert, C.G., Doyle, L., Getz, M.M., …& Scharenberg, A.M. 2009. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic acids research 37(20): 6871 -6880.
  • Kaya, M., Ito, J., Kotaka, A., Matsumura, K., Bando, H., Sahara, H., …& Kondo, A. 2008. Isoflavoneaglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillusoryzae on yeast cell surface. Applied Microbiology and Biotechnology 79(1): 51 -60.
  • Kieke, M.C., Cho, B.K., Boder, E.T., Kranz, D.M. &Wittrup, K.D. 1997.Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein engineering 10(11): 1303-1310.
  • Klis, F.M., Boorsma, A. & De Groot, P.W. 2006.Cell wall construction in Saccharomyces cerevisiaeYeast 23(3): 185-202.
  • Klis, F.M., Mol, P., Hellingwerf, K. & Brul, S. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS microbiology reviews 26(3): 239-256.
  • Kollár, R., Petráková, E., Ashwell, G., Robbins, P.W. & Cabib, E. 1995.Architecture of the yeast cell wall the linkage between chitin and β (13)-glucan. Journal of Biological Chemistry 270(3): 1170-1178.
  • Kollár, R., Reinhold, B.B., Petráková, E., Yeh, H.J., Ashwell, G.,Drgonová, J., …& Cabib, E. 1997. Architecture of the yeast cell wall β (1→ 6)-glucan interconnects mannoprotein, β (1→ 3)- glucan, and chitin. Journal of Biological Chemistry 272(28): 17762-17775.
  • Lee, H.W., Lee, S.H., Park, K.J., Kim, J.S., Kwon, M.H. & Kim, Y.S. 2006. Construction and characterization of a pseudo-immune human antibody library using yeast surface display. Biochem and biophys res commun 346(3): 896-903.
  • Levin, D.E. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189(4): 1145-1175.
  • Levy, R., Forsyth, C.M., LaPorte, S.L., Geren, I.N., Smith, L.A. & Marks, J.D. 2007. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. Journal of molecular biology 365(1): 196-210.
  • Levy, R., Forsyth, C.M., LaPorte, S.L., Geren, I.N., Smith, L.A., & Marks, J.D. 2007. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. Journal of molecular biology365(1): 196-210.
  • Li, J., Wang, Y., Liang, Y., Ni, B., Wan, Y., Liao, Z., …& Wang, S. 2009. Fine antigenic variation within H5N1 influenza virus hemagglutinin’s antigenic sites defined by yeast cell surface display. European journal of immunology 39(12): 3498-3510.
  • Lipke, P.N. & Ovalle, R. 1998. Cell wall architecture in yeast: new structure and new challenges. Journal of bacteriology 180(15): 3735-3740.
  • Magnelli, P., Cipollo, J.F. & Abeijon, C. 2002.A refined method for the determination of Saccharomyces cerevisiaecell wall composition and β-1, 6-glucan fine structure.Analytical biochemistry 301(1): 136-150.
  • Matano, Y., Hasunuma, T. & Kondo, A. 2012.Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresource technology 108: 128-133.Sk Amir Hossain, Chanchal Mandal, Toufiq Ahmed & S.M Rifat Rahman Matsumoto, T., Fukuda, H., Ueda, M., Tanaka, A. & Kondo, A. 2002. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl. Environ. Microbiol.68(9): 4517-4522.
  • Moukadiri, I. & Zueco, J. 2001.Evidence for the attachment of Hsp150/Pir2 to the cell wall of Saccharomyces cerevisiae through disulfide bridges.FEMS yeast research 1(3): 241 -245.
  • Murai, T., Ueda, M., Yamamura, M., Atomi, H., Shibasaki, Y., Kamasawa, N., …& Tanaka, A. 1997. Construction of a starch-utilizing yeast by cell surface engineering. Appl. Environ. Microbiol. 63(4): 1362-1366.
  • Nakamura, Y., Shibasaki, S., Ueda, M., Tanaka, A., Fukuda, H. & Kondo, A. 2001. Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Applied microbiology and biotechnology 57(4): 500-505.
  • Orlean, P. 1997. Biogenesis of Yeast Wall and Surface Components. Cold Spring Harbor Monograph Archive 21: 229-362.
  • Orlean, P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall.Genetics 192(3): 775-818.
  • Orr, B.A., Carr, L.M., Wittrup, K.D., Roy, E.J. &Kranz, D.M. 2003.Rapid method for measuring ScFv thermal stability by yeast surface display. Biotechnology progress 19(2): 631 -638.
  • Osumi, M. 1998. The ultrastructure of yeast: cell wall structure and formation. Micron 29(2-3): 207- 233.
  • Pagé, N., Gérard-Vincent, M., Ménard, P., Beaulieu, M., Azuma, M., Dijkgraaf, G.J., …& Sdicu, A.M. 2003. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin.Genetics 163(3): 875-894.
  • Parthasarathy, R., Subramanian, S., Boder, E.T. & Discher, D.E. 2006.Post‐translational regulation of expression and conformation of an immunoglobulin domain in yeast surface display. Biotechnology and bioengineering 93(1): 159-168.
  • Richman, S.A., Kranz, D.M., & Stone, J.D. 2009. Biosensor detection systems: engineering stable, high-affinity bioreceptors by yeast surface display. Methods MolBiol 504: 323-350.
  • Ruiz-Herrera, J. 2016.Fungal cell wall: structure, synthesis, and assembly.CRC press.
  • Shusta, E.V., Pepper, L.R., Cho, Y.K. & Boder, E.T. 2008. A decade of yeast surface display technology: where are we now? Combinatorial chemistry & high throughput screening 11(2): 127-134.
  • Szczupak, A., Kol-Kalman, D. & Alfonta, L. 2012. A hybrid biocathode: surface display of O 2- reducing enzymes for microbial fuel cell applications. Chemical Communications 48(1): 49-51.
  • Tsai, S.L., DaSilva, N.A. & Chen, W. 2012.Functional display of complex cellulosomes on the yeast surface via adaptive assembly.ACS synthetic biology 2(1): 14-21.
  • Ueda, M. & Tanaka, A. 2000.Genetic immobilization of proteins on the yeast cell surface. Biotechnology advances 18(2): 121 -140.
  • Van Antwerp, J.J. & Wittrup, K.D. 2000. Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnology progress 16(1): 31 -37.
  • Van der Vaart, J.M., Caro, L.H., Chapman, J.W., Klis, F.M. &Verrips, C.T. 1995.Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. Journal of bacteriology 177(11): 3104-3110.
  • Wang, K.C., Patel, C.A., Wang, J., Wang, J., Wang, X., Luo, P.P. & Zhong, P. 2010. Yeast surface display of antibodies via the heterodimeric interaction of two coiled-coil adapters. Journal of immunological methods 354(1-2): 11 -19.
  • Yang, N., Yu, Z., Jia, D., Xie, Z., Zhang, K., Xia, Z., …& Qiao, M. 2014. The contribution of Pir protein family to yeast cell surface display. Applied microbiology and biotechnology 98(7): 2897-2905.
  • Yue, L., Chi, Z., Wang, L., Liu, J., Madzak, C., Li, J. & Wang, X. 2008.Construction of a new plasmid for surface display on cells of Yarrowia lipolytica. Journal of Microbiological
    Methods 72(2): 116-123

Download Full Paper Here (Right-Click and Save As)

HEAT CONTENT AND BURNING TIME OF TROPICAL PEAT

Dayang Nur Sakinah Musa*, Rebecca Mishallyne Afat, Melissa Sharmah Gilbert, Kamlisa Uni Kamlun

Forestry Complex, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.

*Corresponding author : dns.m@ums.edu.my

ABSTRACT. Peat composes of organic matter and easily drying out during the dry season. This situation will result in a smouldering fire in peat swamp forest especially with the help of El-Nino phenomenon and eventually will destroy home for endangered species such as Orangutan. It is important in order to study the effect of forest fire on peat thermal properties. The study was conducted in Binsuluk Forest Reserve, Sabah, Malaysia, The aims of this study were to measure the heat of content and burning time of peat at a different level and to find the relationship of the heat of content in Binsuluk Forest Reserve. Samples of burnt peat were taken using an auger at 1.5 m, 2.0 m, 2.5 m and 3.0 m depths. The peat samples were tested for heat of content (MJ Kg-1) and burning time (minutes). Results shown that peat has a higher heat of content at a depth of 3.0 m with 51.652.07 MJ Kg-1 and lower heat of content at 2.5 m depth with 49.600.46 MJ Kg-1. Burnt peat takes longer time recorded at 3.0 m peat depth with mean value of 127.201.88 minutes and the shorter time recorded at the depth of 1.5 m with mean 101.400.51 minutes. Thus, these data suggest that increases in the heat of content of the peat can increase the time for the peat to completely burnt. The heat content and burning time were perhaps influenced by the moisture content of the peat in Binsuluk Forest Reserve with range of moisture content between 209.880.18 % to 1013.511.39 % . The information on thermal properties of peat in Sabah is important for the forest managers and researchers to get an idea of the impact of forest fire on peat and can create better management on the peat swamp forest area.

KEYNOTES: Peat swamp forest, Peat fire, Burning time, Heat of Content

 

REFERENCE

  • Boehm, H. D. V., Siegert, F., Rieley, J. O., Page, S. E., Jauhiainen, J., Vasander, H., & Jaya, A. (2001, November). Fire Impacts And Carbon Release On Tropical Peatlands In Central Kalimantan, Indonesia. In Proceedings Of The 22nd Asian Conference On Remote Sensing (Pp. 5-9). Cattau, M. E., Harrison, M. E., Shinyo, I., Tungau, S., Uriarte, M., & DeFries, R. (2016). Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Global Environmental Change, 39, 205-219.
  • Comas, X., Terry, N., Slater, L., Warren, M., Kolka, R., Kristiyono, A., … & Darusman, T. (2015). Imaging Tropical Peatlands In Indonesia Using Ground-Penetrating Radar (Gpr) And Electrical Resistivity Imaging (Eri): Implications For Carbon Stock Estimates And Peat Soil Characterization. Biogeosciences, 12(10), 2995-3007. Frandsen, W.H. (1997). Ignition probability of organic soils. Canadian Journal of Forest Research, 27(9), 1471 -1477.
  • Huang, X., & Rein, G. (2019). Upward-and-downward spread of smoldering peat fire. Proceedings of the Combustion Institute, 37(3), 4025-4033. Huang, X., Francesco, R., Michela, G., & Guillermo, R. (2016). “Experimental Study of the Formation and Collapse of an Overhang in the Lateral Spread of Smouldering Peat Fires.” Combustion and Flame 168: 393–402. IKA. (1998). IKA-Calorimeter system C 5000 Manual.
  • Melling, L., Uyo, L. J., Goh, K. J., Hatano, R., & Osaki, M. (2006). Soils Of Loagan Bunut National Park, Sarawak, Malaysia-Final Report. Undp/Gef Funded Project On The Conservation And Sustainable Use Of Tropical Peat Swamp Forests And Associated Wetland Ecosystems.
  • Musa, D.N.S., & Ramli, S.N. (2017). “Fire Threat in Peat Swamp Forest in Malaysia.” In Biology Vol. 1 Emerging Themes in Fundamental and Applied Sciences, , Chapter 3. Musa, D. N. S., & Nuruddin, A.A. (2015). “Calorific Value of Leaves of Selected Dipterocarp Trees Species in Piah Forest Reserve, Perak.” Journal of Tropical Resources and Sustainable Science 3(1): 132–34.
  • Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global And Regional Importance Of The Tropical Peatland Carbon Pool. Global Change Biology, 17(2), 798-818.
  • Putra, R., Sutriyono, E., Kadir, S., & Iskandar, I. (2019). UNDERSTANDING OF FIRE DISTRIBUTION IN THE SOUTH SUMATRA PEAT AREA DURING THE LAST TWO DECADES. INTERNATIONAL JOURNAL OF GEOMATE, 16(54), 146-151.
  • Rein, G., Cohen, S., & Simeoni, A. (2009). Carbon Emissions From Smouldering Peat In Shallow And Strong Fronts. Proceedings Of The Combustion Institute, 32(2), 2489-2496. SFD. (201 6). Sabah Forestry Department Annual Report 201 6. Pg.219. SFD. (2019). Map of Binsuluk Forest Reserve (Class 1).
  • Syaufina, L., Nuruddin, A. A., Basharuddin, J., See, L. F., & Yusof, M. R. M. (2004). The effects of climatic variations on peat swamp forest condition and peat combustibility. Jurnal Manajemen Hutan Tropika, 10(1).
  • Usup, A., Hashimoto, Y., Takahashi, H., & Hayasaka, H. (2004). Combustion And Thermal Characteristics Of Peat Fire In Tropical Peatland In Central Kalimantan, Indonesia. Tropics, 14(1), 1 -19.
  • Yoshino, K., Nagano, T., Ishida, T., Ishioka, Y., & Sirichuaychoo, W. (2002). Distribution Of Peat Depth In Tropical Peat Swamp Area In Narathiwat Of The Southern Part Of Thailand. Rural
    And Environment Engineering, 2002(43), 13-22.
  • Zainorabidin, A., & Mohamad, H. M. (2016). A Geotechnical Exploration Of Sabah Peat Soil: Engineering Classifications And Field Surveys. Ejge, 21, 6671 -6687.

 

Download Full Paper Here (Right-Click and Save As)

THE OUTLOOK OF RURAL WATER SUPPLY IN DEVELOPING COUNTRY: REVIEW ON SABAH, MALAYSIA

Rosalam Sarbatly1, Farhana Abd Lahin2*, Chel-Ken Chiam3
1, 2, 3 Membrane Technology Research Group, Material and Mineral Research Unit, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, MALAYSIA

Email: 1rslam@ums.edu.my, 2*farhana.abdlahin@ums.edu.my, 3chiamchelken@ums.edu.my

ABSTRACT. This paper reviews the challenges in the water supply provision, water source availability and quality and the distribution approaches in rural Sabah. The main challenges to provide potable water in Sabah is the variance in terrain and geographical distance between populated regions. Review reveals that other than the river water, average annual precipitation of 3000 millimetres (mm) could be harvested for domestic and agricultural purposes. Numbers of aquifer uncovered in the eastern and western region of Sabah with underlying sandstone and Quaternary Alluvium have significant potential for groundwater reservoirs. Aquifer along the coastal areas and islands around Sabah also gives sufficient potable water supplies. Minimal pollutant content was found in all water sources and acceptable under the National Water Standard of Malaysia, except for contaminants coming from septic tanks and agricultural activities. A decentralized water system is more beneficial for Sabah’s rural areas. Smaller scaled plants are flexible to collect from any water sources and treat at the point of use. Expenditure is significantly decreased by a shorter distribution network and lower installation and maintenance cost. Nonetheless, the treatment utilized may be limited to a simpler process as semiskilled or un-skilled personnel will be required to operate and maintain the system.

KEYWORDS: Groundwater, Malaysia, rainwater, rural area, surface water, water supply

REFERENCE

  • Abd Razak, Y. and Abd Karim, M. H. (2009) “Groundwater in the Malaysian Context” in Groundwater Colloquium 2009, Groundwater Management in Malaysia -Status and Challenges. Putrajaya, Malaysia, Academy of Sciences Malaysia (ASM), 1 –14.
  • Abdullah, M. H. and Musta, B. (1999) Phreatic Water Quality of the Turtle Islands of East Malaysia: Pulau Selingaan and Pulau Bakkugan Kechil. Borneo Science, 6, 1–9.
  • Abdullah, M. H., Musta, B., and Md. Tan, M. (1997) A Preliminary Geochemical Study on Manukan Island, Sabah. Borneo Science, 3, 43–51.
  • Van Afferden, M., Cardona, J. A., Müller, R. A., Lee, M. Y., and Subah, A. (2015) A new approach to implementing decentralized wastewater treatment concepts. Water Science and Technology, 72(11), 1923–1930.
  • Ahmed, W., Gardner, T., and Toze, S. (2011) Microbiological Quality of Roof-Harvested Rainwater and Health Risks: A Review. Journal of Environment Quality, 40(1), 13. [online] https://www.agronomy.org/publications/jeq/abstracts/40/1/13.
  • Alahmr, F. O. M., Othman, M., Abd Wahid, N. B., Halim, A. A., and Latif, M. T. (2012) Compositions of dust fall around semi-Urban Areas in Malaysia. Aerosol and Air Quality Research, 12(4), 629–642.
  • Almeida, C. and Soares, F. (2012) Microbiological monitoring of bivalves from the Ria Formosa Lagoon (south coast of Portugal): A 20years of sanitary survey. Marine Pollution Bulletin,
    64(2), 252–262. [online] http://dx.doi.org/10.1016/j.marpolbul.2011.11.025.
  • Ani, A. I. . (2009) Rainwater harvesting system evaluation: A resident experience in Sabah, Malaysia. International Symposium in Developing Economies: Commonalities Among Diversities, 26– 39.
  • Appan, A. (1997) Roof water collection systems in some Southeast Asian countries: Status and water quality levels. Journal of the Royal Society of Health, 117(5), 319–323. [online] http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed4&NEWS=N&AN= 1998050802.
  • Ariffin, M. and Sulaiman, S. N. M. (2015) Regulating Sewage Pollution of Malaysian Rivers and its Challenges. Procedia Environmental Sciences, 30, 168–173. [online] http://linkinghub.elsevier.com/retrieve/pii/S1878029615006246.
  • Aris, A. Z., Abdullah, M. H., and Kim, K. (2007) Hydrogeochemistry of Groundwater in Manukan Island, Sabah. The Malaysian Journal of Analytical Sciences, 11(2), 407–413.
  • Aris, A. Z., Lim, W. Y., Praveena, S. M., Yusoff, M. K., Ramli, M. F., and Juahir, H. (2014) Water Quality Status of Selected Rivers in Kota Marudu , Sabah , Malaysia and its Suitability for Usage. Sains Malaysiana, 43(3), 377–388.
  • Asano, T., Burton, F. L., Leverenz, H. L., Tsuchihashi, R., and Tchobanoglous, G. (2007) Water Reuseissues, Technologies and Applications, New York, USA, McGraw Hill.
  • ASM (2011) Sustaining Malaysia ’ s Future: Mega Science Framework Study Water Sector - Final Report,
  • Atta, M., Yaacob, W. Z. W., and Jaafar, O. Bin (2015) The potential impact of leachate-contaminated groundwater of an ex-landfill site at Taman Beringin Kuala Lumpur, Malaysia. Environmental Earth Sciences, 73(7), 3913–3923. [online] http://link.springer.com/10.1007/s12665-014-3675-x.
  • Ayob, S. and Rahmat, S. N. (2017) Rainwater Harvesting ( RWH ) and Groundwater Potential as Alternatives Water Resources in Malaysia : A Review. MATEC Web Conference,
    04020(103).
  • Ayog, J., Ayog, J. L., Dullah, S., and Ramli, R. (2016) Harvested Rainwater Quality Assessment on the Effects of Roof Materials to the First Flush Runoff. Transactions on Science and Technology, 271 –276.
  • Barde, J. A. (2017) What Determines Access to Piped Water in Rural Areas? Evidence from SmallScale Supply Systems in Rural Brazil. World Development, 95, 88–110. [online] http://dx.doi.org/10.1016/j.worlddev.2017.02.012. van den Berg, C. (2015) Drivers of non-revenue water: A cross-national analysis. Utilities Policy, 36, 71–78. [online] http://dx.doi.org/10.1016/j.jup.2015.07.005.
  • Burford, M. A., Revill, A. T., Smith, J., and Clementson, L. (2012) Effect of sewage nutrients on algal production, biomass and pigments in tropical tidal creeks. Marine Pollution Bulletin, 64(12), 2671–2680. [online] http://dx.doi.org/10.1016/j.marpolbul.2012.10.008.
  • Chan, N. W. (2006) A comparative study of water resources usage by households in GeorgetownMalaysia and Pattaya-Thailand. Iranian Journal of Environmental Health Science & Engineering, 3(4), 223–228. [online] http://journals.tums.ac.ir/abs/3377.
  • Che-Ani, A. I., Shaari, N., Sairi, A., Zain, M. F. M., and Tahir, M. M. (2009) Rainwater harvesting as an alternative water supply in the future. European Journal of Scientific Research, 34(1), 132– 140. [online] http://www.scopus.com/inward/record.url?eid=2-s2.0- 68849093029&partnerID=tZOtx3y1.
  • Chen, F. and Yao, Q. (2014) The Development of Rural Domestic Wastewater Treatment in China. Advanced Materials Research, 10731076, 829–832.
  • Chen, Z., Ngo, H. H., and Guo, W. (2013) A Critical Review on the End Uses of Recycled Water. Critical Reviews in Environmental Science and Technology, 43(14), 1446–1516. [online] https://doi.org/10.1080/10643389.2011.647788.
  • Chen, Z., Wu, Q., Wu, G., and Hu, H. Y. (2017) Centralized water reuse system with multiple applications in urban areas: Lessons from China’s experience. Resources, Conservation and Recycling, 117, 125–136. [online] http://dx.doi.org/10.1016/j.resconrec.2016.11.008.
  • Chu, L. H. (2004) Groundwater Utilization and Management in Malaysia. Thematic Session on Geoenvironment of Delta and Groundwater Management in East and Southeast Asia, CCOP Annual Session, 83–93. [online] http://www.ccop.or.th/download/pub/41as_ii.pdf.
  • Cleophas, F. N., Isidore, F., Han, L. K., and Bidin, K. (201 3) Water quality status of Liwagu River , Tambunan , Sabah , Malaysia. Journal of Tropical Biology and Conservation, 10, 67–73.
  • Cravo, A., Fernandes, D., Dami??o, T., Pereira, C., and Reis, M. P. (2015) Determining the footprint of sewage discharges in a coastal lagoon in South-Western Europe. Marine Pollution Bulletin,
    96(1–2), 197–209. [online] http://dx.doi.org/10.1016/j.marpolbul.2015.05.029.
  • Crites, R. W. and Tchobanoglous, G. (1998) Small and decentralized wastewater management systems, New York, McGraw-Hill. Davis, M. L. and Cornwell, D. A. (2013) Introduction to Environmental Engineering, Singapore, Mc Graw Hill.
  • Despins, C., Farahbakhsh, K., and Leidl, C. (2009) Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. Journal of Water Supply: Research and Technology AQUA, 58(2), 117–134. DHI (2011) Non-Revenue Water: Custom solutions for water utilities to reduce leakage and optimise pipe networ management. DHI Solution. DID (2009) Rainwater Harvesting: Guidebook on Planning and Design, Drainage, Malaysian Department of Irrigation and Drainage.
  • Distefano, T. and Kelly, S. (2017) Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130–147. [online] http://dx.doi.org/10.1016/j.ecolecon.2017.06.019.
  • Elango, L. and Kannan, R. (2007) Rock-water interaction and its control on chemical composition of groundwater. Concepts and Applications in Environmental Geochemistry, 5(07), 229–246. [online] http://www.sciencedirect.com/science/article/pii/S1474817707050115 (Accessed November 28, 2017).
  • Engin, G. O. and Demir, I. (2006) Cost analysis of alternative methods for wastewater handling in small communities. Journal of Environmental Management, 79(4), 357–363.
  • Fahnline, E. (2013) The production and remediation of malaysia’s groundwater resources. Ensearch Sustainability and Environmental Management Conf. and Exhibition, 1 –52.
  • Faisal, M., Omang, S. A. K., and Tahir, S. (1994) Geology of Kota Kinabalu and its implications to groundwater potential. Geololy Society Malaysia, Bulletin, 38, 11–20.
  • Falco, G. J. and Webb, W. R. (2015) Water Microgrids: The Future of Water Infrastructure Resilience. Procedia Engineering, 118, 50–57.
  • Giri, R. R., Takeuchi, J., and Ozaki, H. (2006) Biodegradation of domestic wastewater under the simulated conditions of Thailand. Water and Environment Journal, 20(3), 169–176.
  • Harun, S., Dambul, R., Abdullah, M. H., and Mohamed, M. (2014) Spatial and seasonal variations in surface water quality of the Lower Kinabatangan River Catchment , Sabah , Malaysia. Journal of Tropical Biology and Conservation, 11, 117–131.
  • Harun, S. and Fikri, A. H. (2016) Report on Water Quality Monitoring in Sugut River and its Tributaries, Kota Kinabalu, Sabah.
  • Hasan, H. H., Jamil, N. R., and Aini, N. (2015) Water Quality Index and Sediment Loading Analysis in Pelus River, Perak, Malaysia. Procedia Environmental Sciences, 30, 133–138. [online] http://linkinghub.elsevier.com/retrieve/pii/S1878029615006180.
  • Heng, L. Y., Chukong, L. N., Stuebing, R. B., and Omar, M. (2006) The Water Quality of Several Oxbow Lakes in Sabah, Malaysia and its Relation to Fish Fauna Distribution. Journal of Biological Sciences, 2(6), 365–369.
  • Higuerey, A., Trujillo, L., and González, M. M. (2017) Has efficiency improved after the decentralization in the water industry in Venezuela? Utilities Policy, 49, 127–136.
  • Hing, T. T. (1994) Hydrochemistry of groundwater at Sahabat region, Sabah. Newsletter of the Geological Society of Malaysia., 20(3), 229–230.
  • Hussein, M., Yoneda, K., Othman, N., Mohd Zaki, Z., and Mohd Yusof, M. H. (2017) Effects of Number of Connections and Pipe Length To the Water Losses in Melaka. Jurnal Teknologi, 79(3), 45–59. [online] http://www.jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/9874.
  • Huston, R., Chan, Y. C., Chapman, H., Gardner, T., and Shaw, G. (2012) Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Research, 46(4), 1121 –1132. [online] http://dx.doi.org/10.1016/j.watres.2011.12.008.
  • Isa, N. M., Aris, A. Z., Lim, W. Y., Sulaiman, W. N. A. W., and Praveena, S. M. (2014) Evaluation of heavy metal contamination in groundwater samples from Kapas Island, Terengganu, Malaysia. Arabian Journal of Geosciences, 7(3), 1087–1100. Ismail, W. M. Z. W. (2009) “Groundwater for Domestic Needs in Kelantan” in Groundwater Colloquium 2009, Groundwater Management in Malaysia -Status and Challenges., 149–156.
  • Jasin, B. and Tating, F. F. (1991) Late Eocene planktonic Foraminifera from the Crocker Formation, Pun Batu, Sabah. Warta Geologi, 17(4), 187–191. JBA (2014) Jabatan Bekalan Air (JBA) – Empangan Air Negeri Johor. Sabah Water Dam. [online] http://www.jba.gov.my/index.php/en/empangan-air-negeri-sabah (Accessed January 19, 2018).
  • Jeong, H., Broesicke, O. A., Drew, B., and Crittenden, J. C. (2018) Life cycle assessment of smallscale greywater reclamation systems combined with conventional centralized water systems for the City of Atlanta, Georgia. Journal of Cleaner Production, 174, 333–342. [online] http://linkinghub.elsevier.com/retrieve/pii/S0959652617325015.
  • Kadhum, S. A., Ishak, M. Y., Zulkifli, S. Z., and Hashim, R. binti (2015) Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Marine Pollution Bulletin, 101(1), 391 –396.
  • Kasmin, H., Bakar, N. H., and Zubir, M. M. (2016) Monitoring on The Quality and Quantity of DIY Rainwater Harvesting System. IOP Conference Series: Materials Science and Engineering, 136, 1 –8. [online] http://stacks.iop.org/1757 – 899X/136/i=1/a=012067?key=crossref.fff6394d3e607d908e96ee0ecfd1f8f3.
  • Kelly, E., Lee, K., Shields, K. F., Cronk, R., Behnke, N., Klug, T., and Bartram, J. (2017) The role of social capital and sense of ownership in rural community-managed water systems: Qualitative evidence from Ghana, Kenya, and Zambia. Journal of Rural Studies, 56, 156–166. [online] https://doi.org/10.1016/j.jrurstud.2017.08.021.
  • Krishna, J. (2005) The Texas Manual on Rainwater Harvesting, Austin, Texas. [online] http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+Texas+Manual+on+ Rainwater+Harvesting#0.
  • Kura, N. U., Ramli, M. F., Sulaiman, W. N. A., Ibrahim, S., and Aris, A. Z. (2015) An overview of groundwater chemistry studies in Malaysia. Environmental Science and Pollution Research, 1–19. [online] http://dx.doi.org/10.1007/s11356-015-5957-6.
  • Lee, C. (2011) Privatization, water access and affordability: Evidence from Malaysian household expenditure data. Economic Modelling, 28(5), 2121 –2128. [online] http://dx.doi.org/10.1016/j.econmod.2011.05.003.
  • Lee, J. Y., Yang, J. S., Han, M., and Choi, J. (2010) Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources. Science of the Total Environment, 408(4), 896–905. [online] http://dx.doi.org/10.1016/j.scitotenv.2009.11.001.
  • Lee, K. E., Mokhtar, M., Mohd Hanafiah, M., Abdul Halim, A., and Badusah, J. (2016) Rainwater harvesting as an alternative water resource in Malaysia: potential, policies and development. Journal of Cleaner Production, 126, 218–222.
  • Leong, J. Y. C., Oh, K. S., Poh, P. E., and Chong, M. N. (2017) Prospects of hybrid rainwatergreywater decentralised system for water recycling and reuse: A review. Journal of Cleaner Production, 142, 3014–3027.
  • Liang, X. and van Dijk, M. P. (2010) Financial and economic feasibility of decentralized wastewater reuse systems in Beijing. Water science and technology : a journal of the International Association on Water Pollution Research, 61(8), 1965–1973.
  • Liew, W. L., Kassim, M. A., Muda, K., Loh, S. K., and Affam, A. C. (2014) Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review. Journal of Environmental Management, 149, 222–235. [online] http://dx.doi.org/10.1016/j.jenvman.2014.10.016.
  • Lin, C. Y., Abdullah, M. H., Aris, A. Z., and Praveena, S. M. (2009) A Baseline Study on Groundwater Quality of the A Baseline Study on Groundwater Quality of the Tourist Island , Pulau. Modern Applied Science, 3(5), 62–74.
  • Liu, J., Liu, Q., and Yang, H. (2016) Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecological Indicators,
    60, 434–441. [online] http://dx.doi.org/10.1016/j.ecolind.2015.07.019.
  • Loo, Y. Y., Billa, L., and Singh, A. (2015) Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6(6), 817–823. [online] http://linkinghub.elsevier.com/retrieve/pii/S167498711400036X (Accessed August 29, 2017). Malaysian Meteorological Department (2017) Malaysian Climate. MET Malaysia, 1 –2. [online] http://www.met.gov.my/in/web/metmalaysia/climate/generalinformation/malaysia?p_p_id= 56_INSTANCE_zMn7KdXJhAGe&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view &p_p_col_id=column- 1&p_p_col_pos=1&p_p_col_count=2&_56_INSTANCE_zMn7KdXJhAGe_page=1 (Accessed September 5, 2017).
  • Man, S. (2015) Sistem penuaian air hujan : Kajian kes kesediaan masyarakat di Rainwater harvesting : A case study of public readiness in Bandar. , 11(11), 53–62. Manap, M. A., Sulaiman, W. N. A., Ramli, M. F., Pradhan, B., and Surip, N. (2013) A knowledge driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arabian Journal of Geosciences, 6(5), 1621 –1637.
  • Mara, G. (2004) Domestic Wastewater Treatment in Developing Countries, New York, Earthscan. Ministry of Finance Malaysia (2017) Malaysian Budget Report, Kuala Lumpur, Malaysia.
  • MMOH, M. M. of H. (2010) Drinking Water Quality Surveillance Programme – Ministry of Health. [online] http://kmam.moh.gov.my/public- user/drinking-water-quality-standard.html. National Water Services Commission (2016) Non Revenue Water (NRW), [online] http://www.span.gov.my/index.php/en/statistic/water-statistic/non-revenue-water- nrw-2016.
  • Nicholson, N., Clark, S. E., Long, B. V, Spicher, J., and Steele, K. a (2009) “Rainwater Harvesting for Non-Potable Use in Gardens: A Comparison of Runoff Water Quality from Green vs. Traditional Roofs” in World Environmental and Water Resources Congress 2009.
  • Reston, VA, American Society of Civil Engineers, 1 –10. [online] http://ascelibrary.org/doi/10.1061/41036%28342%29146. NRO (1994) Natural Resources Office Sabah: Water Resources Master Plan, Final Report Overview,
  • Nyemba, A., Manzungu, E., Masango, S., and Musasiwa, S. (2010) The impact of water scarcity on environmental health in selected residential areas in Bulawayo City, Zimbabwe. Physics and Chemistry of the Earth, 35(13–14), 823–827. [online] http://dx.doi.org/10.1016/j.pce.2010.07.028.
  • Padfield, R., Tham, M. H., Costes, S., and Smith, L. (2016) Uneven development and the commercialisation of public utilities: A political ecology analysis of water reforms in Malaysia. Utilities Policy, 40, 152–161.
  • Piratla, K. R. and Goverdhanam, S. (2015) Decentralized Water Systems for Sustainable and Reliable Supply. Procedia Engineering, 118, 720–726.
  • Praveena, S. M., Lin, C. Y., Aris, A. Z., and Abdullah, M. H. (2010) Groundwater Assessment at Manukan Island, Sabah: Multidisplinary Approaches. Natural Resources Research, 19(4), 279–291. [online] http://dx.doi.org/10.1007/s11053-010-9124-y.
  • Rahmat, S. N. B., Ali, Z. M., and Musa, S. (2008) “Treatment of Rainwater Quality Using Sand Filter” in International Conference on Environment 2008 (ICENV 2008)., 1 –8. Rijsberman, F. R. (2006) Water scarcity: Fact or fiction? Agricultural Water Management, 80, 5–22.
  • Saimy, I. S. and Yusof, N. A. M. (2013) The Need for Better Water Policy and Governance in Malaysia. Procedia – Social and Behavioral Sciences, 81, 371 –375. [online] http://linkinghub.elsevier.com/retrieve/pii/S1877042813015127. Saleh, H. and Samsudin, A. R. (2013) Geo-Electrical Resistivity Characterization of Sedimentary Rocks in Dent Peninsular, Lahad Datu, Sabah. Borneo science, 32, 33–43.
  • Salleh, H. M. and Malek, N. A. (2012) Non-Revenue Water, Impact To The Services, Environment And Financial, [online] http://www.kettha.gov.my/kettha/portal/document/files/Pdf Innovasi Kettha/NRW Impact To The Service,Environment And Financial.pdf.
  • Sánchez, A. S., Cohim, E., and Kalid, R. A. (2015) A review on physicochemical and microbiological contamination of roof-harvested rainwater in urban areas. Sustainability of Water Quality and Ecology, 6, 119–137.
  • Sapkota, M., Arora, M., Malano, H., Moglia, M., Sharma, A., George, B., and Pamminger, F. (2015) An overview of hybrid water supply systems in the context of urban water management: Challenges and opportunities. Water (Switzerland), 7(1), 153–174. [online] https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84920875758&doi=10.3390%2Fw7010153&partnerID=40&md5=3d410c20acf9e654bcdcc bc19ef66cbc.
  • Sefie, A., Aris, A. Z., Shamsuddin, M. K. N., Tawnie, I., Suratman, S., Idris, A. N., Saadudin, S. B., and Wan Ahmad, W. K. (2015) Hydrogeochemistry of Groundwater from Different Aquifer in Lower Kelantan Basin, Kelantan, Malaysia. Procedia Environmental Sciences, 30, 151– 156. [online] http://www.sciencedirect.com/science/article/pii/S1 878029615006210.
  • Shaheed, R., Wan Mohtar, W. H. M., and El-Shafie, A. (2017) Ensuring water security by utilizing roof-harvested rainwater and lake water treated with a low-cost integrated adsorptionfiltration system. Water Science and Engineering, 10(2), 115–124. [online] http://dx.doi.org/10.1016/j.wse.2017.05.002.
  • Shirazi, S. M., Adham, M. I., Zardari, N. H., Ismail, Z., Imran, H. M. D., and Mangrio, M. A. (2015) Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia. Journal of Water and Land Development, 24(1–3), 11–19.
  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., and Kouimtzis, T. (2003) Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124. [online] http://www.sciencedirect.com/science/article/pii/S0043135403003981#BIB1 (Accessed September 19, 2017).
  • Sitzenfrei, R. and Rauch, W. (2014) Investigating transitions of centralized water infrastructure to decentralized solutions – An integrated approach. Procedia Engineering, 70, 1549–1557. [online] http://dx.doi.org/10.1016/j.proeng.2014.02.171. Suratman, S. (2004) 6.6. IWRM: Managing the Groundwater Component in Malaysia. Malaysia Water Forum, Kuala Lumpur, Malaysia, 19–22. [online] http://scholar.google.ca/scholar?start=100&q=iwrm&hl=en&as_sdt=1,5#22.
  • Suratman, S., Tawnie, I., and Sefei, A. (2011) Impact of landfills on groundwater in Selangor, Malaysia. ASM Science Journal, 5(2), 101 –108. Tan, J. (2012) The Pitfalls of Water Privatization: Failure and Reform in Malaysia. World Development, 40(12), 2552–2563. [online] http://dx.doi.org/10.1016/j.worlddev.2012.05.012.
  • Tankiewicz, M., Fenik, J., and Biziuk, M. (2010) Determination of organophosphorus and organonitrogen pesticides in water samples. TrAC – Trends in Analytical Chemistry, 29(9), 1050–1063. [online] http://dx.doi.org/10.1016/j.trac.2010.05.008.
  • Tarbuck, E. J. and Lutgens, F. K. (2015) Earth Science, England, Pearson.
  • Tubau, I., Vázquez-Suñé, E., Carrera, J., Valhondo, C., and Criollo, R. (2017) Quantification of groundwater recharge in urban environments. Science of The Total Environment, 592, 391– 402.
  • [online] http://linkinghub.elsevier.com/retrieve/pii/S0048969717306307 (Accessed September 13, 2017).
  • UNICEF and WHO (2017) Progress on Drinking Water, Sanitation and Hygiene, [online] http://apps.who.int/iris/bitstream/10665/258617/1/9789241512893 – eng.pdf%0Ahttp://www.wipo.int/amc/en/%0Ahttp://www.wipo.int/amc/en/.
  • Wang, J., Li, Y., Huang, J., Yan, T., and Sun, T. (2016) Growing water scarcity, food security and government responses in China. Global Food Security, 14, 1–9. [online] http://dx.doi.org/10.1016/j.gfs.2017.01.003.
  • Weber, B., Cornel, P., and Wagner, M. (2007) Semi-centralised supply and treatment systems for (fast growing) urban areas. Water Science and Technology, 55(1–2), 349–356. [online] http://wst.iwaponline.com/content/55/1 -2/349.abstract. WHO and UNICEF (2014) Progress on sanitation and drinking-water – 2014 update. Monitoring Programme for water supply and sanitation, 1 –78. [online] http://books.google.com/books?hl=en&lr=&id=irXCej15ax8C&oi=fnd&pg=PA56&dq=Dri nking+Water+and+Sanitation&ots=nB6oNXONjK&sig=ccf20ooYvn9F1SWv_miDYvNkE As. Wilderer, P. A. and Schreff, D. (2000) Decentralized and centralized wastewater management: A challenge for technology developers. Water Science and Technology, 41(1), 1 –8.
  • Xiao, S., Hu, S., Zhang, Y., Zhao, X., and Pan, W. (2018) Influence of sewage treatment plant effluent discharge into multipurpose river on its water quality: A quantitative health risk assessment of Cryptosporidium and Giardia. Environmental Pollution, 233, 797–805. [online] http://linkinghub.elsevier.com/retrieve/pii/S0269749117326817.
  • Yan, X., Ward, S., Butler, D., and Daly, B. (2017) Performance assessment and life cycle analysis of potable water production from harvested rainwater by a decentralized system. Journal of Cleaner Production, 172, 2167–2173.
  • Yaser, A. Z. and Safie, N. N. (2020) Green Engineering for Campus Sustainability, Springer Singapore.
  • Yaziz, M. I., Gunting, H., Sapari, N., and Ghazali, A. W. (1989) Variation in Rainwater From Roof Ctachments. Water Research, 23(6), 761 –765.
  • Zeng, Z., Liu, J., and Savenije, H. H. G. (2013) A simple approach to assess water scarcity integrating water quantity and quality. Ecological Indicators, 34, 441–449. [online] http://dx.doi.org/10.1016/j.ecolind.2013.06.012.
  • Zhou, Q., Deng, X., and Wu, F. (2017) Impacts of water scarcity on socio-economic development: A case study of Gaotai County, China. Physics and Chemistry of the Earth, Parts A/B/C. [online] http://linkinghub.elsevier.com/retrieve/pii/S1474706516302285.
  • Zin, T., SabaiAung, T., Saupin, S., Myint, T., KhinSN, D., Soe Aung, M., and S, S. B. (2015) Influencing Factors for Cholera and Diarrhoea: Water Sanitation and Hygiene in Impoverished Rural Villages of Beluran District, Sabah Malaysia. Malaysian Journal of Public Health Medicine, 15(1), 30–40

 

Download Full Paper Here (Right-Click and Save As)

ABOVE AND BELOW GROUND CARBON STOCK OF ACACIA MANGIUM STAND IN SABAH, MALAYSIA

Tan Chun Hung 1 , Normah Awang Besar 1* , Mohamadu Boyie Jalloh 2 , Maznah Mahali 1 ,
Nissanto Masri 3

1 Faculty of Science and Natural Resources, Universiti Malaysia Sabah Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

2 Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Jalan Sungai Batang, Mile 10, 90000, Sandakan, Sabah, Malaysia. 3 Sabah Forest Development Authority (SAFODA) Jalan Gaya, Wisma Perkasa, 88000 Kota Kinabalu, Sabah, Malaysia

*Corresponding author: normabr@ums.edu.my

ABSTRACT. This study aimed to estimate above and belowground carbon stock in Acacia mangium stands of different silvicultural systems (planted and regeneration) at the Bengkoka Forest Plantation, Pitas, Sabah, Malaysia. Aboveground biomass (AGB) and belowground biomass (BGB), and soil organic carbon content (SOC) at depth of 30 cm were quantified. A comparison was done between the two different silvicultural systems of Acacia mangium. A random systematic sampling method was used for conducting the forest inventory. Three circular plots of 0.25 ha were established in each of the Acacia mangium systems. Diameter at breast high (DBH) of every tree was measured using a diameter tape. Shrub layer and organic layer were measured at five randomly selected positions in each plot. Five litter fall traps (1m x 1m) were set up in the same position as the shrub and organic layer. Three holes (25 cm x 25 cm x 30 cm) were dug to get the roots for quantifying the roots biomass and soil for carbon content. The soil bulk density was determined by using undisturbed soil samples collected by using 51 mm diameter ring (100 cc.). The results showed that the total amount of carbon stock was 73.56 t ha-1 and 82.40 t ha-1 for planted and regeneration stands, respectively. The study revealed that the major contributor to total carbon stock for both planted and regeneration Acacia mangium stands was the aboveground biomass with mean values of 46.99 t ha-1 and 53.83 t ha-1 followed by belowground biomass with mean values of 26.57 t ha-1 and 28.57 t ha-1, respectively.

KEYWORDS: Acacia mangium, aboveground biomass, belowground biomass, carbon stock, soil organic carbon

 

REFERENCE

  • Acres, B.D., Burrough, P.A., Folland, C.J., Kalsi, M.S., Thomas, P. & Wright, P.S. 1975.The Soils of Sabah, Volume 1 – Classification and Description. England: Land Resource Devision, Ministry of Overseas Development. 135 pp.
  • Allison, L.E. 1965. Organic carbon. Methods of Soil Analysis, Part 2,
  • C. A. Black et al., Ed. Agronomy. 9:1367-1378. Am. Sot of Agron., Inc., Madison, WI.
  • Arun, J.N. Gitasree, D. Ashesh, K.D. 2009. Above ground standing biomass and carbon storage in village bamboos in North East India. Bio m a s s & Bioenergy . 2009. 33:1188-1196. Brown, S. 1997. Estimating Biomass and Biomass Change of Tropical Forest.FAO Forestry Paper -134. FAO, Rome. Brown, S., J. Sathaye, M. Cannell, and P. Kauppi. 1996. Management of forests for mitigation of greenhouse gas emissions.
  • In R. T. Watson, M.C. Zinyowera, and R.H. Moss (eds.), Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press,Cambridge and New York, Chapter 24 DIN.19683-2. Bestimmung der Partikelgrößenverteilung in mineralboden-Verfahren mittels Siebung und Sedimentation. FAO. 2011. State of the World’s Forests 2011 . Food and Agriculture Organization of the United Nations. Fearnside, P. M. 1996 Amazonian Deforestation And Global Warming: Carbon Stocks in Vegetation
    Replacing Brazil’s Amazon Forest. Forest EcolManag. 80:21 -34
  • Hall C.A.S., Uhlig J., 1991. Refining estimates of carbon released from tropical landuse change. Can J Forest Res. 21:118-13
  • Heriansyah, I., Miyakuni, K., Kato, T., Kiyono., Y. and Kanazawa, Y. 2007. GrowthCharacteristics and Biomass Accumulation of Acacia mangium Under Different Management Practices in Indonesia. Journal of Tropical Forest Science, 19(4): 226-235.
  • Herdiyanti, I. and Sulistyawati E. 2010. Carbon Stocks in Acacia mangium Willd. Stands of Different Ages.School of Life Sciences and Technology.InstitutTeknologi Bandung.
  • Heriyanto N. M., Imanudin R., Kato T. and Siregar C. A. 2005. Methodology Of Measurement And Analysis Of Biomass Carbon. The 3rd Workshop on the Demonstration Study on Carbon Fixing Forest Management in Indonesia. Indonesia. December, 2005.
  • Hertel, D., Moser, G., Culmsee, H., Erasmi, S., Homa, V., Schuldt, B. &Leuschner Ch. 2009. Below- and Above-Ground Biomass and Net Primary Production in a Paleotropical Natural Forest (Sulawesi, Indonesia) as Compared to Neotropical Forest. Journal of Forest Ecology and Management. 258:19041912
  • Houghton, R. A., Skole, D. L., Nobre, C. A., Hackler, J. L., Lawrence, K. T., Chomentowski, W. H. 2000. Annual Fluxes of Carbon From Deforestation and Regrowth in The Brazilian Amazon. Nature. 403:301 -304
  • Houghton, R. A. 1991. Tropical deforestation and atmospheric carbon dioxide. ClimateChange. 19:99- 118 INBAR. 2006. In partnership for a better world-strategy to the year 2015. Beijing, China: NBAR. Page 23
  • Landsberg, J.J., Linder, S., Mc Murtrie, R.E. 1995. Effects of Global Change on Managed Forest- A Strategic Plan for Research on Managed Forest Ecosystems in aGlobally Changing Environment. GCTE report no.4. IUFRO Occassional Paper no.1. GCTE and IUFRO. Page 1 -17. Lim, M. T. 1986. Biomass and Productivity of 4.5 Year-Old Acacia mangium in Sarawak. Pertanika 9 , Page 81 -87 Lim, M. T. 1988. Studies on Acacia mangium in Kemasul Forest, Malaysia. I. Biomass and Productivity. Journal of Tropical Ecology , 4(3): 293-302
  • Ogawa, M., Okimori, Y., and Takahashi, F. 2005. Carbon Sequestration By Carbonization of Biomass and Forestation: Three Case Studies. Mitigation and Adaptation Strategies for Global Change. 2006. 11:429-444
  • Potvin, C., Mancilla, L., Buchmann, N., Monteza, J., Moore, T., Murphy, M., Oelmann,M., SchererLorenzen, M., Turner, B.L., Wilcke, W., Zeugin, F., & Wolf, S. 2011 An ecosystem approach to biodiversity effects: Carbon pools in a tropical tree plantation. Forest Ecology and Management . 261: 16141624
  • Ravindranath, N.H., Joshi, N.V., Sukumar, R. and Saxena, A. 2006.Impact of climate change on forests in India. Current Science . 90(3):354-361.
  • Young, R. A, and Giese. R. 1990. A Guide to Monitoring Carbon Storage in Forestry and Agroforestry Projects. Forest Science, 2nd Edition USA: John Willey & Sons, Vol. 89:86-96
  • Zhao, L., Y. Sun, X. Zhang, X. Yang, and C. F. Drury. 2006. Soil organic carbon in clay and silt sized particles in Chinese mollisols: Relationship to the predicted capacity. Geoderma. 132-323

 

Download Full Paper Here (Right-Click and Save As)

PHYTOCHEMICAL AND ANTIMICROBIAL INVESTIGATION AND COMPARISON BETWEEN YOUNG AND MATURE Psidium guajava LEAVES EXTRACT

Tommy Nathaniel Nasiri, Suraya Abdul Sani, Rahmath Abdullah, Ainol Azifa Mohd Faik, Roslina Jawan,
and Mohd Khalizan Sabullah*

Biotechnology programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah

*Corresponding author : khalizan@ums.edu.my

ABSTRACT.Ethnomedicinal properties of Psidium guajava L. , or also known as guava leaves has been known since years ago. Nowadays, a lot of guava leaves-based products emerge in industries such as tea and cosmetic. The aims of this study are to examine and compare the variation in the phytochemical constituent as well as the antimicrobial efficacy of young and mature leaves extract. Phytochemical analysis shows the presence of phenol, tannin, terpene, saponin, and flavonoid in the mature leaves methanolic extract. A similar result was obtained in the young leaves extract but no saponin was detected. Total phenols content in young and mature leaves were determined at a total of 31.2 mg and 162 mg GA/g. Both leave extract was carried out to determine the antimicrobial properties by tested against two Grampositive bacteria (Staphylococcus aureus and Bacillus cereus) and one gram-negative bacteria (Salmonella enterica) through the disk-diffusion method by employing 40 µL of leaf extract solution per disk. Based on the observation, both young and mature extracts exhibited inhibitory activity (<6.0 mm) against the tested bacteria with different sensitivity. At the concentration of 10 mg/mL, mature leaves extract shows higher efficacy on S. enterica and B. cereus where the inhibitory zone was measured at 9.3 mm and 7.8 mm, respectively, compared to young leaves which is not sensitive to S. aureus but the inhibitory zone on B. cereus around 7.2 mm while S. aureus at 7.2 mm higher than mature leave extract. This can be concluded that the P. guajava mature leave displayed the best to applied as medicinal purposes as its high variety of phytochemical content and high efficacy as antimicrobial activity.

KEYWORDS: Psidium guajava L., extraction, phytochemical, antimicrobial, disk-diffusion method

 

REFERENCE

  • Abas, F., Nordin H. L., Israf, D. A., Khozirah, S. and Umi Kalsom Y. 2006. Antioxidant and Nitric Oxide Inhibition Activities of Selected Malay Traditional Vegetables. Food Chemistry 95(4): 566– 573.
  • Abdullah, M., Mamat, M. P., Yaacob, M. R., Radam, A. and Fui L. H. 2015. Estimate the Conservation Value of Biodiversity In National Heritage Site: A Case Of Forest Research Institute Malaysia. Procedia Environmental Sciences 30. Environmental Forensics 2015: 180–185.
  • Achakzai, A. K. K., Achakzai, P., Masood, A., Kayani, S. A. and Tareen, R. B. 2009. Response of Plant Parts and Age on the Distribution of Secondary Metabolites on Plants Found in Quetta. Pakistan Journal of Botany 41(5): 2129-2135.
  • Ahmad, N., Fazal, H., Ayaz, M., Abbasi, B. H., Mohammad, I. and Fazal, L. 2011. Dengue Fever Treatment with Carica Papaya Leaves Extracts. Asian Pacific Journal of Tropical Biomedicine 1(4): 330–333.
  • Alam, A., Ferdosh, S., Ghafoor, K., Hakim, A., Juraimi A. S., Khatib, A. and Sarker, Z. I. 2016. Clinacanthus Nutans: A Review of The Medicinal Uses, Pharmacology And Phytochemistry. Asian Pacific Journal of Tropical Medicine 9(4): 402–409.
  • Ali, A. M., Mackeen, M. M., El-Sharkawy, E. S., Hamid, J. A., Ismail, N. H., Ahmad, F. B. H. and Lajis, N. 1996. Antiviral and Cytotoxic Activities of Some Plants Used in Malaysian Indigenous Medicine. Pertanika Journal Of Tropical Agricultural Science 19: 129–136.
  • Auwal, M. S., Tijjani, A. N., Sadiq, M. A., Saka, S., Mairiga, I. A., Shuaibu, A., Adawaren, E. and Gulani, I. A. 2013. Antibacterial and Haematological Activity of Moringa Oleifera Aqueous Seed Extract In Wistar Albino Rats. Sokoto Journal Of Veterinary Sciences. 11(1): 28-37–37.
  • Balouiri, M., Moulay S., and Ibnsouda, S. K. 2016. Methods for In Vitro Evaluating Antimicrobial Activity: A Review. Journal of Pharmaceutical Analysis. 6(2): 71 –79.
  • Biswas, B., Rogers, K., Mclaughlin, F., Daniels, D. and Yadav, A. 2013. Antimicrobial Activities of Leaf Extracts Of Guava (Psidium Guajava L.) On Two Gram-Negative And Gram-Positive Bacteria. Research Article. International Journal Of Microbiology. 2013: ID 746165.
  • Chang, X., Yusheng L., Zhixiong L., Qiu, J., Xinbo Guo, X. Jianping Pan , J. and Abbasi, A. M. 2018 Impact Of Leaf Development Stages On Polyphenolics Profile And Antioxidant Activity In Clausena Lansium (Lour.) Skeels. Research Article. Biomed Research International. 2018: ID 7093691
  • Chen, X., Ma, Z. and Kitts, D. D. 2018. Effects of Processing Method and Age of Leaves on Phytochemical Profiles and Bioactivity of Coffee Leaves. Food Chemistry 249: 143 –153.
  • Chiari-Andréo, Galdorfini, B., Trovatti, E., Marto, J. et al. 2017. Guava: Phytochemical Composition of A Potential Source Of Antioxidants For Cosmetic And/Or Dermatological Applications. Brazilian Journal of Pharmaceutical Sciences. 53(2): https://doi.org/10.1590/s2175 – 97902017000216141
  • Hoffman, David. 2003. Medical Herbalism the Science & Practice of Herbal Medicine By David Hoffmann. 108-152. Inner Tradition International. Https://Www.Powells.Com/Book/MedicalHerbalism-The-Science-Practice-Of-Herbal-Medicine-9780892817498, Accessed March 21, 2019.
  • Hossain, M. A., Al-Raqmi, K. A. S., Al-Mijizy, Z. H., Weli, A. M. and Al-Riyami, Q. 2013. Study of Total Phenol, Flavonoids Contents and Phytochemical Screening Of Various Leaves Crude Extracts Of Locally Grown Thymus Vulgaris. Asian Pacific Journal Of Tropical Biomedicine 3(9): 705–710.
  • Inoue, Y., Akiko, S., Toshiko, H.,Hirose, K., Hamashima, H. and Shimada, J. 2004. The Antibacterial Effects of Terpene Alcohols on Staphylococcus aureus and Their Mode Of Action. Fems Microbiology Letters 237(2): 325–331.
  • Ito, Shin-Ichi, Takashi Ihara, Hideyuki Tamura, et al. 2007. Α-Tomatine, The Major Saponin In Tomato, Induces Programmed Cell Death Mediated By Reactive Oxygen Species In The Fungal Pathogen Fusarium Oxysporum. Febs Letters 581(17): 3217–3222.
  • Jaradat, Nidal, Fatima Hussen, And Anas Al Ali. 2015. Preliminary Phytochemical Screening, Quantitative Estimation Of Total Flavonoids, Total Phenols And Antioxidant Activity Of Ephedra Alata Decne. J Mater Environ Sci 6(6): 1771 –8.
  • Jarikasem, Siripen, Somyot Charuwichitratana, Sontana Siritantikorn, et al. 2013. Antiherpetic Effects Of Gynura Procumbens. Evidence-Based Complementary And Alternative Medicine : Ecam 2013. Https://Www.Ncbi.Nlm.Nih.Gov/Pmc/Articles/Pmc3789483/, Accessed March 6, 2019.
  • Kazan, Kemal, And Donald M. Gardiner. 2017. Targeting Pathogen Sterols: Defence And Counterdefence? Plos Pathogens 13(5). Https://Www.Ncbi.Nlm.Nih.Gov/Pmc/Articles/Pmc5436867/, Accessed March 21, 2019.
  • Khan, M. I., Ahhmed, A., Shin, J. H. et al. 2018. Green Tea Seed Isolated Saponins Exerts Antibacterial Effects Against Various Strains Of Gram Positive And Gram Negative Bacteria, A Comprehensive Study In Vitro And In Vivo. Research Article. Evidence-Based Complementary And Alternative Medicine. Https://Www.Hindawi.Com/Journals/Ecam/2018/3486106/, Accessed March 21, 2019.
  • Khoo, L. W., Siew A. K., Ming T. L., Tan, C. P., Shaari, K., Tham, C. L. and Abas, F. 2018. A Comprehensive Review On Phytochemistry And Pharmacological Activities Of Clinacanthus Nutans (Burm.F.) Lindau. Evidence-Based Complementary and Alternative Medicine: Ecam 2018: 9276260.
  • Maris, P. 1995. Modes Of Action Of Disinfectants. Revue Scientifique Et Technique (International Office Of Epizootics) 14(1): 47–55.
  • Mcsweeney, C. S, B Palmer, D. M Mcneill, And D. O Krause. 2001. Microbial Interactions With Tannins: Nutritional Consequences For Ruminants. Animal Feed Science And Technology 91(1) 83–93.
  • Metwally, A. M., A. A. Omar, F. M. Harraz, And S. M. El Sohafy. 2010. Phytochemical Investigation And Antimicrobial Activity of Psidium Guajava L. Leaves. Pharmacognosy Magazine 6(23): 212–218.
  • Mierziak, J., Kamil K., and Anna K. 2014. Flavonoids as Important Molecules of Plant Interactions with The Environment. Molecules (Basel, Switzerland) 19(10): 16240–16265.
  • Murukan, G. and Murugan, K. 2018. Comparison of Phenolic Acids and Antioxidant Activities of Young And Mature Leaves of Tectona grandis L F. Asian Journal of Pharmaceutical and Clinical Research. 60–66.
  • Najiah, M., Nadirah, M., Arief, Z., Zahrol, S., Tee, L.W., Ranzi, A.D., Amar, A.S., Laith, A.R., Mariam, M., Suzana, S. and Aida, R.J. 2011. Antibacterial Activity of Malaysian Edible Herbs Extracts on Fish Pathogenic Bacteria. Res J Med Plant 5(6): 772–778.
  • Nobossé, P., Fombang, E. N. and Mbofung, C. M. F. 2018. Effects of Age and Extraction Solvent on Phytochemical Content and Antioxidant Activity of Fresh Moringa Oleifera L. Leaves. Food Science & Nutrition 6(8): 2188–2198.
  • Salvamani, S., Gunasekaran, B., Shukor, M. Y., Shaharuddin, N. A., Sabullah, M. K. and Ahmad, S. A. 2016. Anti-Hmg-Coa Reductase, Antioxidant, And Anti-Inflammatory Activities Of Amaranthus Viridis Leaf Extract As A Potential Treatment For Hypercholesterolemia. Evidence-Based Complementary And Alternative Medicine 2016: ID 8090841.
  • Somboonwong, J., Kankaisre, M., Tantisira, B. and Tantisira, M. H. 2012. Wound Healing Activities of Different Extracts of Centella Asiatica in Incision and Burn Wound Models: An Experimental Animal Study. BMC Complementary and Alternative Medicine 12: 103.
  • Subenthiran, S., Choon, T. C., Cheong, K. C. 2013. Carica Papaya Leaves Juice Significantly Accelerates The Rate Of Increase In Platelet Count Among Patients With Dengue Fever And Dengue Haemorrhagic Fever. Research Article. Evidence-Based Complementary And Alternative Medicine. 2013: ID 616737
  • Tiwari, P., Kumar, B., Kaur, M., Kaur, G. and Kaur, H. 2011. Phytochemical Screening and Extraction: A Review. Internationale Pharmaceutica Sciencia. 1: 98 – 107.
  • Yoke Y. K., Tan, J. J., Teh, S. S.. 2013. Clinacanthus Nutans Extracts are Antioxidant with Antiproliferative Effect on Cultured Human Cancer Cell Lines. Research Article. Evidence Based Complementary And Alternative Medicine. 2013: ID 462751.
  • Zahra, A. A., Kadir, F. A., Mahmood, A. A., Al Hadi, A., Suzy, S., Sabri, S., Latif, I. I. and Ketuly, K. A. 2011. Acute Toxicity Study and Wound Healing Potential of Gynura Procumbens Leaf Extract in Rats. Journal of Medicinal Plants Research 5(12): 2551 –2558.

Download Full Paper Here (Right-Click and Save As)

CHARACTERIZATION OF OIL PALM LEAF PAPER WITH STARCH AS BINDER

Sabrina Soloi1*, Adib Afifi Mohammad1
1Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah,
88400 Kota Kinabalu, Sabah.
*Corresponding author: sabrinas@ums.edu.my

ABSTRACT. The utilization of agro-based fibre in replacing the wood fibre for pulp and paper making has been the subject of interest due to the abundance of this agro-based fibre as well as to reduce the usage of wood pulp. The presence of cellulose and hemicellulose in acceptable amount for pulp paper makes this agro based fibre an alternative in paper making industry. Previous study has shown that oil palm leaf fibre can be moulded into paper sheet without any binding agent, however, the physical properties ofthe paper were very low compare to other non-wood paper. In this study, the oil palm leaf paper was prepared using 5,8,11 and 14% sodium hydroxide (NaOH) with the addition of 5% starch as the binding agent. The incorporation of starch increases the smoothness of the paper. The tear strength of the paper increases with increasing concentration of sodium hydroxide. At higher concentration ofsodium hydroxide, the paper tear index falls within the range of commercial paper tear index. This study proves that the oil palm leaf has the potential to be developed in paper making industry.

KEYWORDS. Agro-based pulp; Oil palm leaf paper; Soda pulping; Binding agent; Surface morphology

REFERENCES

  • Aremu, M. O., Rafiu, M. A., & Adedeji, K. K. (2015). Pulp and Paper Production from Nigerian Pineapple Leaves and Corn Straw as Substitute to Wood Source. International Research
    Journal of Engineering and Technology.
  • Asim, M., Jawaid, M., Abdan, K., & Nasir, M. (2018). Effect of Alkali treatments on physical and Mechanical strength of Pineapple leaf fibres. IOP Conference Series: Materials Science
    and Engineering, 290(1). https://doi.org/10.1088/1757-899X/290/1/012030
  • Farsheh, A. T., Firouzabadi, M. D., & Mahdavi, S. (2011). Properties of kenaf(hibiscus cannabinus L.) bast fibre reinforced bagasse soda pulp in comparison to long fiber. World Applied
    Sciences Journal, 14(6), 906–909.
  • Fiserova, M., Gigac, J. (2011). Comparison of hardwood kraft pulp fibre characteristics and tensile strength. Cellulose Chemicstry and Technology, 45(9–10), 627–631.
  • Flory., A. ., Requesens, D. V., Dvaiah, S. P., Teoh, K. T., Mansfield, S. D., & Hood, E. E. (2013). Development of green binder for paper products. BMC Biotechnology, 13(28). Retrieved from http://www.lignocellulose.ir/ojs/index.php/lignocellulose/article/view/66
  • Hao, E. K. Z. (2017). The Effect of Cooking Time in Paper Made from Oil Palm Leaves. Universiti Malaysia Sabah.
  • Hedjazi, S., Kordsachia, O., Patt, R., Latibari, A. J., & Tschirner, U. (2009). Alkaline sulfite– anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps. Industrial Crops and Products, 29(1), 27–36. https://doi.org/10.1016/j.indcrop.2008.03.013
  • Khristova, P., Kordsachia, O., Patt, R., Karar, I., & Khider, T. (2006). Environmentally friendly pulping and bleaching of bagasse. Industrial Crops and Products, 23(2), 131 –139. https://doi.org/10.1016/j.indcrop.2005.05.002
  • Laftah, W. A., & Abdul Rahaman, W. A. W. (2015). Chemical pulping of waste pineapple leaves fiber for kraft paper production. Journal of Materials Research and Technology, 4(3), 254– 261. https://doi.org/10.1016/j.jmrt.2014.12.006
  • Liu, Y., Hu, T., Wu, Z., Zeng, G., Huang, D., Shen, Y., … He, Y. (2014). Study on biodegradation process of lignin by FTIR and DSC. Environmental Science and Pollution Research,
    21(24), 14004–14013. https://doi.org/10.1007/s11356-014-3342-5 McDonough, T. (1992). The chemistry of organosolv delignification. IPST Technical Paper Series.
  • Mohd Kassim, A. S., Aripin, A. M., Ishak, N., Zainulabidin, M. H., & Abang Zaidel, D. N. F. (2016). Oil palm leaf fibre and its suitability for paper-based products. ARPN Journal of
    Engineering and Applied Sciences, 11(11), 7364–7369.
  • Rezende, C., de Lima, M., Maziero, P., deAzevedo, E., Garcia, W., & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels,
    4(1), 54. https://doi.org/10.1186/1754-6834-4-54 Rodríguez, A., Serrano, L., Moral, A., & Jiménez, L. (2008). Pulping of rice straw with high-boiling point organosolv solvents. Biochemical Engineering Journal, 42(3), 243–247. https://doi.org/10.1016/j.bej.2008.07.001
  • Rodríguez, Alejandro, Serrano, L., Moral, A., Pérez, A., & Jiménez, L. (2008). Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches. Bioresource Technology,99(6), 1743–1749. https://doi.org/10.1016/j.biortech.2007.03.050
  • Rowell, R. M., Han, J. S., & Rowell, J. S. (2000). Characterization and Factors Effecting Fiber Properties. Natural Polymers an Agrofibers Composites, 115–134.
  • Saad, M. B. W., Oliveira, L. R. M., Cândido, R. G., Quintana, G., Rocha, G. J. M., & Gonçalves, A. R. (2008). Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping. Enzyme and Microbial Technology, 43(2), 220–225. https://doi.org/10.1016/j.enzmictec.2008.03.006
  • Sahin, H. T. (2003). Base-catalyzed organosolv pulping of jute. Journal of Chemical Technology & Biotechnology, 78(12), 1267–1273. https://doi.org/10.1002/jctb.931
  • Soloi, S., & Hao, E. K. Z. (2019). The Potential of Oil Palm Leaf Fibre in Paper-making Industry The Potential of Oil Palm Leaf Fibre in Paper-making Industry. https://doi.org/10.1088/1742-6596/1358/1/012005
  • Sreekala, M. ., Kumaran, M. ., Joseph, S., & Jacob, M. (2000). Oil palm fiber reinforced phenol formaldehyde composites: Influence of fiber surface modifications on mechanical properties. Applied Composite Materials, 7(5–6), 295–329.
  • Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products, 19(3), 245–254. https://doi.org/10.1016/j.indcrop.2003.10.006
  • Vu, T. H. M., Pakkanen, H., & Alén, R. (2004). Delignification of bamboo (Bambusa procera acher) Part 1. Kraft pulping and the subsequent oxygen delignification to pulp with a low kappa number. Industrial Crops and Products, 19(1). https://doi.org/10.1016/j.indcrop.2003.07.001
  • Wanrosli, W. D., Zainuddin, Z., Law, K. N., & Asro, R. (2007). Pulp from oil palm fronds by chemical processes. Industrial Crops and Products, 25(1), 89–94. https://doi.org/10.1016/j.indcrop.2006.07.005
  • Yamauchi, T., & Tanaka, A. (2002). Tearing test for paper using a tensile tester. Journal of WoodScience, 48(April 1995), 532–535. https://doi.org/10.1007/BF00766652

Download Full Paper Here (Right-Click and Save As)