Volume 41 (Issue 2, September 2020)

The Composition of Chitin, Chitosan and its Derivatives in the Context of preparation and Usability – A Review.
- Syaheera Md Zin1, Adnin Awalludin1, Newati Wid1, Kamarulzaman Abd. Kadir2 and Mohd Sani Sarjadi1,*

Estimating Mangrove Above-ground Biomass (AGB) in Sabah, Malaysia Using Field Measurements, Shuttle Radar Topography Mission and Landsat Data
- Charissa Jasmine Wong1, Daniel James1, Normah Awang Besar1 and Mui-How Phua1*

Quantifying Aboveground Biomass over 50-Ha Tropical Forest Dynamic Plot in Pasoh, Malaysia Using LiDAR and Census Data
- Hamdan Omar1*, Muhamad Afizzul Misman1  and Yao Tze Leong1

Tourist Satisfaction at Nature-based Tourism Destination around Kota Kinabalu, Sabah
- Talib, H.

Tourist Satisfaction Dimension in Kinabalu Park, Sabah, Malaysia
- Timothy Ajeng Mereng[1], Hamimah Talib1* and Jennifer Chan Kim Lian[2]
Download FULL Journal HERE

THE COMPOSITION OF CHITIN, CHITOSAN AND ITS DERIVATIVES IN THE CONTEXT OF PREPARATION AND USABILITY- A REVIEW

Syaheera Md Zin1, Adnin Awalludin1, Newati Wid1, Kamarulzaman Abd. Kadir2 and Mohd Sani Sarjadi1*

1Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
2Enviro Clean Energy Sdn. Bhd. Suite, Level 5, Bangunan Perkim, No. 150, Jalan Ipoh, 51200, Kuala Lumpur, Malaysia.

*Corresponding author: msani@ums.edu.my

ABSTRACT. The demand for chitosan polymer in domestic and industrial use is increasingly rising. The applications are widely used in the fields of nutrition, cosmetics, biomedical, pharmaceutical, water treatment and agriculture. Normally, the preparation of chitin comes from a bio-waste source and requires three chemical processes including demineralisation, deproteinisation, and discolouration. Meanwhile, the preparation of chitosan from chitin is through the process of deacetylation. The production of chitosan and its derivatives have covered various fields, including synthetic polymers. It has also become a medium and alternative material helping to solve many problems including being able to save time, cost and energy in the production of a material. Then, there will be a positive impact on environmental sustainability and biomedical engineering. The chitin derivatives resulting from deacetylation of chitosan are also flexible enough to be lysosomal enzymes, which can be used as carriers of active drug substances in the body system. Various efforts and research have been carried out on the development of chitosan-based polymeric materials, in particular organic polymers. Chitosanbased polymers can be used as an alternative to replace petroleum and natural gas resources. Besides, it is easy to dispose of, degrades quickly, has a short shelf life and is environmentally friendly. It is proven as many previous reports and studies on the synthesis, characteristics and use of these polymers around the world. The purpose of this review is to explain the properties, methods of preparation and use of chitin, chitosan and its derivatives.

KEYWORDS. Chitosan, chitin, deacetylation, polymer

 

  • REFERENCE
    Allan, C. R. & Hadwiger, L. A. 1979. The fungicidal effect of chitosan on fungi of varrying cell wall composition. Journal in Experimental of Mycol, 3:285-287.
  • Anaraz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G. & Heras, A. 2009. Functional Characterisation of Chitin and Chitosan. Journal of Current Chemical Biology, 3:203-230. Annaduzzaman, M. 2015. Chitosan Biopolymer As An Adsorbent For Drinking Water Treatment: Investigation on Arsenic and Uranium. Thesis, Department of Sustainable Development, Environmental Science and Engineering. Sweden: KTH Royal Institute of Technology.
  • Asford, N. A., Hattis, D. & Murray, A. E. 1977. Industrial prospects for chitin and protein from shellfish wastes. Cambridge, MA: MIT . Atkins, E. 1985. Conformations in polysaccarides and complex carbohydrates. Journal of Bioscience, 8:375-387.
  • Austin, P. R. 1975. Solvents and purification of chitin. Chemical,3(892):731.
  • Austin, P. R., Brine, C. J., Castle, J. E. & Zikaris, J. P. 1981. Chitin: New facets of research. Journal of Science, 212:749.
  • Baxter, A., Dillon, M. & Taylor, K. D. A. 1992. Improved method for IR determination of the degree of N-acetylation of chitosan. International Journal of Biological Macromolecules, 14(3):166- 169.
  • Benavente, M. 2008. Adsorption of metallic ions onto chitosan: Equilibrium and Kinetic Studies. TRITA CHE. Black, C. A. 1965. Methods of Soil Analysis: Part 1 Physical and Mineralogical properties. American Society of Agronomy.
  • Blair, H. S., Guthrie, J., Law, T. & Turkington, P. 1987. Chitosan and modified chitosan membranes I. Preparation and characterisation, J. Appl. Polym. Sci., 33:641 -656.
  • Batista, I. & Roberts, G. A. F. 1990. A novel, facile technique for deacetylating chitin. Markromol. Chem., 191:429-434.
  • Bough, W. A., Salter, W. L., Wu, A. C. M. & Perkins, B. E. 1978. Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. 1. Chemical composition, viscosity, and molecular weight distribution of chitosan products. Biotechnol. Bioeng., 20: 931.
  • Brine, C. J., Sandford, P. A & Zikaris, J. P. 1977. Advances in Chitin and Chitosan Its Composition and Sequences to determined by high-field proton and carbon N.M.R.-spectroscopy- Relation to Solubility. Elsevier Applied Science, 127.
  • Brzeski, D. 1987. Chitin and Chitosan-putting waste to good use. Infofish International Journal, 5:31- 33. Capozza, R. C. 1975. Enzymically decomposable biodegradable pharmaceutical carrier. Ger. Patent, 2(305):505.
  • Charles, W. L., Admed, E. G., Edo, C., Samir, D., Clauzell, S., John, L., Victor, K & Joseph, A. 1994. Potential of induced resistance to control postharvest diseases of fruits and vegetables. 45 Wiltshire Road, Kearneysville: Appalachian Fruit Res. St.
  • Cheba, B. A. 2020. Chitosan: Properties, Modifications and Food Nanobiotechnology, Procedia Manufacturing, 46, 652-658.
  • Chen, R. H., Lin, W. C. & Lin, J. H. 1994. Effects of pH, ionic strength and type of anion on the rheological properties of chitosan solutions. Acta Polymer, 45:41-46.
  • Chenite, A., Buschmann, M., Wang, D., Chaput, C. & Kandani, N. 2001. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers, 46(1):39-47.
  • Cho, Y. I., No, H. K. & Meyer, S. P. 1998. Physicochemical Characteristics and Functional Properties of various Commercial Chitin and Chitosan Products. Journal of Agricultural and Food Chemistry, 46(9):3839-3843.
  • Crini, G. & Pierre-Marie, B. 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33:399-447.
  • Darder, M., Colilla, M. & Ruiz-hitzky, E. 2003. Biopolymer-Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chemical Materials, 15:3374-3780.
  • Day, R. B., Okada, M., Ito, Y., Tsukada, K., Zaghouni, H., Shibuya, N. & Stacey, G. 2001. Binding site for chitin oligosaccharides in the soybean plasma membrane. Journal of Plant Physiology, 126:1162-1173.
  • De Jong, A. J., Heidstra, R., Spaink, H. P., Hartog, M. V., Meijer, E. A., Hendriks, T., Schiavo, F. L., Terzi, M., Bisseling, T., Van Kammen, A. & De Vries, C. 1993. Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant. Journal of Plant Cell, 5:615-620.
  • Del Blanco, L. F., Rodriguez, M. S., Schluz, P. C. & Agullo, E. 1999. Influence of the deacetylation degree on chitosan emulsification properties. Colloid Polymer Science, 277:1087-1092.
  • Domszy, J. & Roberts, G. 1985. Evalution of infrared spectroscopic techniques for analysing chitosan. Macromolecules J. Chem., 186:1671 -1677.
  • Fernandez, K. S. 2004. Physicochemical and Functional Properties of Crawfish Chitosan as Affected by Different Processing Protocols. Seoul, South Korea: Seoul National University.
  • Freepons, D. 1991. Chitosan: Does it have a place in agriculture? Proc. Plant Growth Regul. Soc. Am. , 11-19.
  • Galed, G., Diaz, E., Goycoolea, F. & Heras, A. 2008. Influence of N-deacetylation conditions on chitosan production from alpha-chitin. Natural Products Communications, 3:543-550.
  • Gardner, K. H. & Blackwell, J. 1975. Refinement of the structure of beta-chitin. Bioploymers, 14:1581.
  • Grenha, A., Seijo, B & Remunan, L. C. 2002. Microencapsulated chitosan nanoparticles for lung protein delivery. Europe Journal Pharmaceutical Science, 25(4-5):427-437.
  • Hackman, R. H. 1954. Studies on chitin: I-Enzymatic degradation of chitin and chitin esters. J. Biol. Sci., 7:168.
  • Hirano, S. & Hayashi, K. 1992. Some N-acyl derivatives of O-carboxymethylchitosan. Journal of Carbohydrate in Chemistry, 225:175-178.
  • Gardner, K. H. & Blackwell, J. 1975. Refinement of the structure of beta-chitin. Bioploymers, 14:1581.
  • Jack, G. W. & Paul, A. S. 1955. Chitin and Chitosan. New York: Marcel Dekker, Inc.
  • Jeanes, A., Rogovin, P., Cadmus, M. C., Silman, R. W. & Knutson, C. A. 1974. Polysaccharide (xanthan) of Xanthomonas campestris NRRL B-1459: Procedures for culture maintenance and polysaccharide production, purification and analysis. USA: USDA Report. Jeuniaux, C. 1996. A brief survey of the early contribution of European scientists to chitin knowledge. Journal of Advances in Chitin Sciences, 1-9.
  • Johnson, E. L. & Peniston, Q. P. 1982. Utilisation of shellfish waste from chitin and chitosan production. Westport: Chemistry and Biochemistry of marine Food Products.
  • Jolles, P. & Muzzarrelli, R. A. A. 1999. Chitin and Chitinase. Switzerland: Birkhauser Verlag.
  • Junginer, H. E. & Sadeghi, A. M. M. 2014. Synthesis, Characterisation and Biomedical of Chitosan and Its Derivatives. In S.K. Kim, Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments. USA: Taylor & Francis Group.pp. 15-68
  • Kappel, L. & Gruber, S. 2020. Chapter 12 – Chitin and chitosan—important structural components in Trichoderma cell wall remodeling, New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, 243-280.
  • Kassai, M. 2008. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymer, 71:497-508.
  • Kavitha, K., Keerthi, T. S. & Tamizh, T. M. 2011. Chitosan Polymer used as Carrier in various Pharmaceutical Formulations: Brief Review. International Journal of Applied Biology and Pharmaceutical Technology, 2(2):249-258.
  • Khan, T., Peh, K. & Ch’ng, H. S. 2002. Reporting degree of deacetylation values of chitosan: The influence of analytical methods. J. Phar Pharmaceut Sci., 5(3): 205-212.
  • Kim, S. K. 2014. Chitin and Chitosan Derivatives: Advances in Drug Disocvery and Developments. USA: CRC Press: Taylor & Francis Group.
  • Knaul, J. Z., Hudson, S. M. & Creber, K. A. M. 1999. Polymer Physics. Journal of Polymer Science: Part B, 72:1079-1094. Knorr, D. (1983). Dye binding properties of chitin and chitosan. Journal of Food Science, 48:36-41.
  • Knorr, D. 1984. Use of chitinous polymers in food-a challenge for food research and development. Journal of Food Technology, 38:85-97.
  • Knorr, D. 1991. Recovery and Utilisation of Chitin and Chitosan in Food Processing Waste Management. Food Technology, 114-122.
  • Koide. 1998. Chitin-Chitosan: Properties, Benefits and Risks. Journal of Nutrient Research, 8(6):1091- 1101.
  • Kumar, M. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1):1-27. Kurita, K. 1998. Chemistry and application of chitin and chitosan. Polymer Degradation and Stability, 59:117-120.
  • Kurita, K., Ishiguro, M. & Kitajima, T. 1988. Studies on chitin: Introduction of long chain alkylidene groups and the influence of properties. International Journal of Biomacromolecules, 10:124.
  • Lamarque, G., Lucas, J. M., Viton, C. & Domard, A. 2005. Phsicochemical behaviour of homogeneous series of acetylated chitosans in aqueous solution: Role of various structural parameters. Biomacromolecules, 6:131-142.
  • Lavall, R. L., Assis, O. B. G. & Campana-Filho, S. P. 2007. Chitin from the pens of Loligo sp.: Extraction and Characterisation. Journal of Bioresource Technology, 98: 2465-2472.
  • Li, Q., Dunn, E. T., Grandmaison, E. W. & Goosen, M. F. A. 1992. Applications and properties of chitosan. Journal of Bioreactive and Compatible Polymer, 2:370-397.
  • Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., Boesel, L. F., Oliveira, J. M., Santos, T. C., Marques, M. P., Neves, N. M. & Reis, R. L. 2007. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. Journal of Revised Social Interface, 4:999-1030.
  • Marchessault, R. H., Ravenelle, F. & Zhu, X. X. 2006. Polysaccharides for drug delivery and pharmaceutical applications. American Chemical Society.
  • Marthur, N. K. & Narang, C. K. 1990. Chitin and Chitosan: Versatile polysaccharides from marine animals. Journal of Chemistry Education, 67:938.
  • Mazeau, K., Winter, W. T. & Chanz, H. 2002. Molecular and crystal structure of high-temperature polymorph of chitosan from electron diffraction data. Journal of Macromolecules, 27:7606- 7612.
  • Mima, S., Miya, M., Iwamoto, R. & Yoshikawa, S. 1983. Highly Deacetylated Chitosan and Its Properties. Journal of Applied Polymer Sciences, 28:1909-1917.
  • Minami, E., Kouchi, H., Carlson, R. W., Cohn, J. R., Kolli, V. K., Day, R. B., Ogawa, T. & Stacey, G. 1996. Cooperative action of lipo-chitin nodulation signals on the induction of the early nodulin, ENOD2, in soybean roots. Journal of Molecular Plant Microbe Interaction, 9:574- 583.
  • Moorjani, M. N., Archutha, V. & Khasim, D. I. 1975. Parameters affecting the viscosity of chitosan from prawn waste. J. Food Sci. Tecnol., 12:187-189.
  • Moore, G. K. & Roberts, G. A. F. 1978. Studies on the acetylation of Chitosan. Proceedings of the First International Conference on Chitin/Chitosan. Cambridge, MA: MIT Sea Grant Program. pp. 421-425
  • Morris, E. R., Rees, D. A., Young, G., Walkshaw, M. D. & Darke, E. 1977. Order-disorder transition for a bacterial polysaccharide in solution: A role for polysaccharide confirmation in recognition between Xanthomonas pathogen and its plant host. Journal of Molecular Biology, 110(1).
  • Muzzarelli, R. A. A. 1977. Chitin. New York: Pergamon Press Ltd.
  • No, H. K. & Meyers, S. P. 1995. Preparation and Characterisation of Chitin and Chitosan-A Review. Journal of Aquatic Food Product Technology, 4(2):27-52.
  • No, H. K., Lee, K. S. & Meyer, S. P. 2000. Correlation Between Physicochemical Characteristics and Binding Capacities of Chitosan Products. Journal of Food Science, 65(7):1134-1137.
  • No, H. K., Meyes, S. P. & Lee, K. S. 1989. Isolation and Characterisation of Chitin from Crawfish Shell Waste. Journal of Agricultural and Food Chemistry, 37(3):575-579.
  • No, H. K. & Lee, M. Y. 1995. Isolation of Chitin from Crab Shell Waste. Journal Korean Soc. Food Nutrition, 24(1):105-113.
  • No, H. K. & Meyer, S. P. 1992. Utilisation of Crawfish Processing Wastes as Carotenoids, Chitin and Chitosan Sources. Journal of Korean Society Food Nutrition, 21(3), 319-326.
  • No, H. K. 2000. Application of Chitosan for Treatment of Wastewaters. Rev. Environ. Contam. Toxicol., 163:1-28. No, H. K., Lee, K. S. & Meyer, S. P. 2000. Correlation Between Physicochemical Characteristics and Binding Capacities of Chitosan Products. Journal of Food Science, 65(7)”1134-1137.
  • No, H. K., Cho, Y. I., Kim, H. R. & Meyer, S. P. 2000. Effective Deacetylation of Chitin under Conditions of 15 psi/121degree celcius. Journal od Agriculture and Food Chemistry, 48(6):2625-2627.
  • No, H. K., Kim, S. J. & Meyer, S. P. 1999. Effects of Physical and Chemical Treatments on Chitosan Viscosity. Journal of Korean Society For Chitin and Chitosan, 4(4): 177-183.
  • Nwe, N., Furuike, T. & Hiroshi, T. 2009. Journal of Materials in Chemistry, Materials and Bioengineering, 2(2):374-388. Oskargata. 2014. History of Chitin and Chitosan. USA: Primex. Retrieved December 21, 2015, from http://www.primex.is/AboutUs/The-History-of-Chitin/ Peniston, Q. P. & Johnson, E. L. 1980. Process for the manufacture of chitosan. USA patent, 4(195):175.
  • Pillai, C. K. S., Willi, P. & Chandra, P. S. 2009. Chitin and Chitosan Polymers: Chemistry, solubility and fiber formation. Journal of Progress in Polymer Science, 34:641-678.
  • Ramos, V. M., Rodriguez, N. M., Heras, A. & Agullo, E. 2003. Modified chitosan carrying phosphoric and alkyl groups. Carbohydrate Polymer, 51:425-429.
  • Ravi Kumar, M. N. 2000. A review of chitin and chitosan applications. Reactive Functional Polymers, 46(1):1-27.
  • Rege, P. R. & Block, L. H. 1999. Chitosan processing: Influence of process parameters during acidic and alkaline hydrolysis and effect of the processing sequence on the resultant chitosan’s properties. Carbohydrate Research, 321(3-4):235-245.
  • Rigby, G. W., Park, E. D., Godber, J. S. & Culley, D. D. 1936. Chemical products and process of preparing the same. USA: USA patent. Rinaudo, M. 2006. Chitin and Chitosan: Properties and applications. Prog. Plym. Sci., 31:603-632.
  • Roberts, G. A. & Domszy, J. G. 1982. Determination of the viscometric constants for chitosan. International Journal of Biological Macromolecules, 4(6):374-377.
  • Roller, S. & Covill, N. 1999. The antifungal properties of chitosan in laboratory media in apple juice. International Journal of Food Microbiology, 47:67-77.
  • Rout, S. K. 2001. Physicochemical, Functional, and Spectroscopic analysis of crawfish chitin and chitosan as affected by process modification. Dissertation.
  • Rudall, K. M. & Kechington, W. 1973. The Chitin System. Journal of Biology Revised, 48:597-633.
  • Ruiz-Herrera, J. 1978. The distribution and quantitative importance of chitin in fungi. In R. A. Muzzarrelli (Ed.), Proceedings of the FIrst International Conference on Chitin/Chitosan (p. 11). Cambridge, MA: MIT Sea Grant Program.
  • Sabnis, S. & Block, L. H. 1997. Improved infrared spectroscopic method for the analysis of degree of Ndeacetylation of chitosan. Polymer Bulletin, 39:67-71.

    Schiffman, J. D. & Schauer, C. L. 2009. Solid-state characterisation of [alpha]-chitin from Vanessa cardui Linnaeus wings. Journal of Material Science Chemical Engineering, 29:1370-1374.

  • Setha, S., Kanlayanarat, S. & Gemma, H. 2000. Effect of various molecular weight of chitosan coating on the ripening of caven dish banana. Bangkok, Thailand: Division of Postharvest Technology, King MoongKurt’s university.
  • Shahidi, F. 1995. Role of chemistry and biotechnology in value-added utilisation of shellfish processing discards. Can. Chemistry News, 47, 25-29.
  • Shen, F., Zhong, H., Ge, W., Ren, J. & Wang, X. 2020. Quercetin/chitosan-graft-alpha lipoic acid micelles: A versatile antioxidant water dispersion with high stability, Carbohydrate Polymers, 234, 115927.
  • Sikorski, P., Hori, R. & Wada, M. 2009. Revisit of alpha-chitin crystal structure using high resolution Xray diffraction data. Journal of Biomacromolecules, 10:1100-1105.
  • Smith, J. P., Simpson, B. K. & Morris, J. 1994. Control of psychotropic pathogens in fresh/processed meat and fish products packaged under modified atmosphere. Faculty of Agriculture and Environmental Science, H9X3V9. Quebec: Macdonald Campus of McGill University . Stephen, A. M. 1995. Food Polysaccharides and Their Applications. USA: Marcel Dekker, Inc. Steve, L. T. 2005. Advances in Food and Nutrition Research (Volume 49). USA: Elsevier Academic Press. Struszcyzk, M. H. 2002. Chitin and chitosan – Part 1: Properties and Productions. Polimery, 47:316-325.
  • Synowiecki, J & Al-Khateeb, N. A. 2003. Production, properties and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutrition, 43:145-171. Takai, M., Shimizu, Y., Hayashi, J., Uraki, Y. & Tokuro, S. 1989. NMR and X-ray studies of chitin and chitosan in solid state. In G. A. Skjak-Braek, Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications (p. 431). New York: Elsevier Applied Science.
  • Tan, S. C., Tan, T. K., Wong, S. M. & Khor, E. 1996. The chitosan yield of Zygomycetes at their optimum harvesting time. Carbohydrate Polymer, 30:239-242. Tan, W., Zhang, J., Mi, Y., Dong, F., Li, Q. & Guo, Z. 2020. Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt via azide-alkyne click reaction, International Journal of Biological Macromolecules, 165, Part B, 1765-1772.
  • Tharanathan, R. N. & Kittur, F. S. 2003. Chitin: The undisputed biomolecular of great potential. Critical Review of Food Science Nutrition, 17(1):27-31.
  • Tokura, S. & Azuma, I. 1990. Chitin Derivatives in Life Science. Japan: Japanese Society for Chitin and Chitosan. Tolaimate, A., Debrieres, J., Rhazi, M., Alagui, A., Vincendon, M. & Vottero, P. 2000. On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer, 41:2463-2469.
  • Uthairatanakij, A., Teixera da Silva, J. A. & Obsuwan, K. 2007. Chitosan for improving orchid production and quality. Orchid Science and Biotechnology, 1:1-5.
  • Venkatesan, J. & Kim, S. K. 2010. Chitosan Composites for Bone Tissue Engineering-An Overview. Marine Drugs, 8:2252-2266.
  • Zhang, H., Renping, L. & Weimin, L. 2011. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review. International Journal of Molecular Sciences, 12:917-934.
  • Zikaris, J. P. 1984. Chitin, Chitosan and Related Enzymes. Orlando, FL, USA: Academic Press.

Download Full Paper Here (Right-Click and Save As)

ESTIMATING MANGROVE ABOVE-GROUND BIOMASS (AGB) IN SABAH, MALAYSIA USING FIELD MEASUREMENTS, SHUTTLE RADAR TOPOGRAPHY MISSION AND LANDSAT DATA

Charissa J. Wong1, Daniel James1, Normah A. Besar1 and Mui-How Phua1*

1Faculty of Science and Natural Resources,
Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah, Malaysia

Corresponding author; Mui-How Phua, Telephone Number: +60 (0)88 320000,
Email; pmh@ums.edu.my

 

ABSTRACT. Mangroves are one of the most productive forest ecosystems and play an important role in carbon storage. We examined the use of Shuttle Radar Topography Mission (SRTM) data to estimate mangrove Above-ground Biomass (AGB) in Sabah, Malaysia. SRTM-DEM can be considered as Canopy Height Model (CHM) because of the flat coastal topography. Nevertheless, we also introduced ground elevation correction using a Digital Terrain Model (DTM) generated with GIS and coastal profile data. We mapped the mangrove forest cover using Landsat imagery acquired in 2015 with the supervised classification method (Kappa coefficient of 0.81). Regression analyses of field AGB and the CHMs resulted in an estimation model with the corrected CHM as the best predictor (R2: 0.73) and cross-validated Root Mean Square Error (RMSE) was 19.70 Mg ha-1 (RMSE%: 11.60). Our study showed Sabah has a mangrove cover of 268,631.91 ha with a total AGB of 44,163,207.07 Mg in 2015. This substantial amount of carbon storage should be monitored over time and managed as part of the climate change mitigation strategy.

KEYWORD. Mangroves, SRTM-DEM, Landsat, Above-ground Carbon, Borneo.

 

REFERENCES

  • Aslan, A., Rahman, A.F., Warren, M.W. and Robeson, S.M. (2016). Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sensing of Environment 183:65-81.
  • Basuki, T.M., Van Laake, P.E., Skidmore, A.K. and Hussin, Y.A. (2009). Allometric equations for estimating the aboveground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257(8):1684-1694.
  • Chandra, I.A., Seca, G. and Abu Hena, M.K. (2011). Aboveground Biomass production of Rhizophora apiculata blume in Sarawak mangrove forest. American Journal of Agricultural and Biological Sciences 6(4):469-474. DHI Water and Environment. (2005). Sabah shoreline management plan.
  • DHI Water and Environment, Kota Kinabalu. Food and Agriculture Organization of the United Nations (FAO). (2007). Brief on national forest inventory (NFI): Malaysia. FAO, Rome.
  • Faridah-Hanum, I., Kudus, K.A. and Saari, N.S. (2012). Plant diversity and biomass of Marudu Bay mangroves in Malaysia. Pakistan Journal of Botany 44:151-156.
  • Fatoyinbo, T.E., Simard, M., Washington-Allen, R.A. and Shugart, H.H. (2008). Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. Journal of Geophysical Research 113:G02S06.
  • Fatoyinbo, T.E. and Amstrong, A.H. (2010). Remote Characterisation of Biomass Measurements: Case Study of Mangrove Forests. In Momba MNB (ed) Biomass. IntechOpen, Sciyo, pp 65-78.
  • Fatoyinbo, T.E., Feliciano, E.A., Lagomasino, D., Lee, D.K. and Trettin, C. (2018). Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi Delta. Environmental Research Letters 13:025012.
  • Fayad, I., Baghdadi, N., Guitet, S., Bailly, J.S., Herault, B., Gond, V., El Hajj, M. and Minh, D.H.T. (2016). Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. International Journal of Applied Earth Observation and Geoinformation 52:502-514.
  • Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J. and Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20:154-159.
  • Kanniah, K.V., Sheikhi, A., Cracknell, A.P., Hong, C.G., Kian, P.T., Chin, S.H. and Rasli, F.N. (2015). Satellite images for monitoring mangrove cover changes in a fast growing economic region in Southern Peninsular Malaysia. Remote Sensing 7:14360-14385.
  • Kauffman, J.B., Heider, C., Cole, T.G., Dwire, K.A. and Donato, D.C. (2011). Ecosystem carbon stocks of Micronesian Mangrove Forests. Wetlands 31:343-352.
  • Kirui, K.B., Kairo, J.G., Bosire, J., Viergever, K.M., Rudra, S., Huxham, M. and Briers, R.A. (2013). Mapping of mangrove forest land cover change along the Kenya coastline using Landsat Imagery. Ocean Coastal and Management 83:19-24.
  • Kugler, F., Schulze, D., Hajnsek, I. Papathanassiou, K.P. (2014). TanDEM-X Pol-InSAR performance for forest height estimation. IEEE Transactions on Geoscience and Remote Sensing.
  • Lagomasino, D., Fatoyinbo, T., Lee, S., Feliciano, E., Trettin, C. and Simard, M. (2016). A comparison of mangrove canopy height using multiple independent measurements from land, air and space. Remote Sensing 8:327.
  • Pham, L.T.H. and Brabyn, L. (2017). Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS Journal of Photogrammetry and Remote Sensing 128:86-97.
  • Sabah Forestry Department (SFD). (2016). Sabah Forestry Department Annual Report 2015. Sabah Forestry Department, Sandakan ISSN 1823-0954.
  • Saenger, P. and Snedaker, S.C. (1993). Pantropical trends in mangrove aboveground biomass and annual litterfall. Oecologia 96(3):293-299.
  • Shapiro, A.C., Trettin, C.C., Kuchly, H., Alavinapanah, S. and Bandeira, S. (2015). The mangroves of the Zambezi delta: increase in extent observed via satellite from 1994-2013. Remote Sensing 7:16504-16518.
  • Simard, M., Zhang, K., Rivera-Monroy, V.H., Ross, M.S., Ruiz, P.L., Castaneda-Moya, E., Twilley, R.R., and Rodriguez, E. (2006). Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogrammetric Engineering and Remote Sensing 72(3):299- 311.
  • Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V.H., Castaneda-Moya, E., Thomas, N. and Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 12:40-45.
  • Stringer, C.E., Trettin, C.C., Zarnoch, S.J. and Tang,W. (2015). Carbon stocks of mangroves within the Zambezi River Delta, Mozambique. Forest Ecology and Management 354:139-148.
  • Zhu, Z. and Woodcock, C.E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment 118:83-94.

Download Full Paper Here (Right-Click and Save As)

QUANTIFYING ABOVEGROUND BIOMASS OVER 50-HA TROPICAL FOREST DYNAMIC PLOT IN PASOH, MALAYSIA USING LIDAR AND CENSUS DATA

Hamdan Omar*, Muhamad Afizzul Misman and Yao Tze Leong

Forestry and Environment Division,
Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia

Corresponding author : Hamdan Omar, Phone No.; +603-62797200,
Email : hamdanomar@frim.gov.my

ABSTRACT. Airborne light detection and ranging (LiDAR) instruments have been widely used for quantification of forest biomass. This study investigated the relationships between LiDAR data and aboveground biomass (AGB). The study area is located at the 50-ha dynamic plot in a primary forest area of the Pasoh Forest Reserve, a lowland dipterocarp forest, a type of evergreen tropical moist forest. A number of variables have been produced from the LiDAR metrics. These variables were correlated with AGB that were derived from census data. The study found that the CHM and a few matrices are the best predictors for AGB and therefore used for the estimation of AGB in the entire study area. The estimated AGB ranged from 52 to 718 Mg ha-1, with a root mean square error (RMSE) of about 59 Mg ha-1. The study suggests that the AGB estimates produced by this study are the most accurate – with an accuracy of 83% based on the mean absolute percentage error (MAPE) – as compared to other remotely-sensed based estimates in the study area.

KEYWORD. Center for Tropical Forest Science (CTFS); 50-ha dynamic plot; LiDAR; biomass

REFERENCES

  • Ashton, P.S., Okuda, T. and Manokaran, N. (2003). Pasoh Research, Past and Present. In Pasoh: Ecology and natural history of a Southeast Asian lowland tropical rain forest. Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S.C., Ashton, P.S., Eds.; Springer: Tokyo, Japan. 1–13.
  • Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martinez-Yrizar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pelissier, R., Ploton, P., Ryan, C.M., Saldariagga, J.G. and Vielledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10): 3177-3190.
  • Chen, Q., (2013). Lidar remote sensing of vegetation biomass. Remote Sensing of Natural Resources. 399–420.
  • Chirici, G., McRoberts, R.E., Fattorini, L., Mura, M. and Marchetti, M. (2016). Comparing echobased and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework. Remote Sensing of Environment174: 1–9.
  • Condit, R. 1998. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a comparison with other plots. Springer: University of Michigan, USA.
  • Dong, P. and Chen, Q. (2018). LiDAR Remote Sensing and Applications.
  • Taylor & Francis, Boca Raton, FL. Drake, J.B., Dubayah, R.O., Knox, R.G., Clark, D.B. and Blair, J.B. (2002). Sensitivity of largefootprint LiDAR to canopy structure and biomass in a neotropical rainforest. Remote
    Sensing of Environment, 81: 378–392.
  • Frazer, G.W., Magnussen, S., Wulder, M.A. and Niemann, K.O. (2011 ). Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR derived estimates of forest stand biomass. Remote Sensing of Environment, 115: 636– 649.
  • Frolking, S., Palace, M.W., Clark, D.B., Chambers, J.Q., Shugart, H.H. and Hurtt, G.C. (2009). Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research: Biogeosciences, 114: G00E02.
  • Hamdan, O., Muhamad Afizzul, M. and Abd Rahman, K. (2017). Synergetic of PALSAR-2 and Sentinel-1A SAR Polarimetry for Retrieving Aboveground Biomass in Dipterocarp Forest of Malaysia. Applied Sciences, 7(675).
  • Hamdan, O. and Muhamad Afizzul, M. (2018). Time series maps of aboveground biomass in dipterocarps forests of Malaysia from PALSAR and PALSAR-2 polarimetric data. Carbon Balance and Management, 13:19.
  • Hamdan Omar, Muhamad Afizzul M. and Y.T. Leong Houghton, R.A., Hall, F. and Goetz, S.J. (2009). Importance of biomass in the global carbon cycle. Journal of Geophysical Research, 114: G00E03.
  • Kochummen, K.M., LaFrankie, J.V. and Manokaran, N. (1990). Floristic Composition of Pasoh Forest Reserve a lowland rainforest in Peninsular Malaysia. Journal of Tropical Forest Science, 3: 1–13.
  • Lefsky, M.A., Cohen, W.B., Harding, D.J., Parker, G.G., Acker, S.A. and Gower, S.T. (2002). LiDAR remote sensing of aboveground biomass in three biomes. Global Ecology and Biogeography, 11: 393–399.
  • Lu, D., Chen, Q., Wang, G., Liu, L., Li, G. and Moran, E. (2016). A survey of remote sensing based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9: 63–105.
  • Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., Zhang, M., Vaglio Laurin, G. and Saah, D. (2012). Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. International Journal of Forestry Research, Article ID 436537.
  • Magnussen, S., Næsset, E., Kändler, G., Adler, P., Renaud, J.P. and Gobakken, T. (2016). A functional regression model for inventories supported by aerial laser scanner data or photogrammetric point clouds. Remote Sensing of Environment, 184: 496–505.
  • Mallet, C. and Bretar, F. (2009). Full-waveform topographic LiDAR: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64: 1–16.
  • Manokaran, N. and LaFrankie, J.V. (1990). Stand structure of Pasoh Forest Reserve, a lowland rainforest in Peninsular Malaysia. Journal of Tropical Forest Science, 3: 14–24.
  • Manokaran, N., LaFrankie, J.V., Kochummen, K.M., Quah, E.S., Klahn, J., Ashton, P.S. and Hubbell, S.P. (1990). Methodology for 50-ha research plot at Pasoh Forest Reserve. FRIM Research Pamphlet, No. 104. FRIM: Kepong, Malaysia.
  • Manokaran, N., Quah, E.S., Ashton, P.S., LaFrankie, J.V., Nur Supardi, M.N., Wan Shukri, W.A. and Okuda, T. (2003). Pasoh Forest Dynamic Plot, Peninsular Malaysia. In Tropical  Forest Diversity and Dynamism, findings from a Large-Scale Plot Network. (Eds. Losos, E.C. and Leigh, Jr. E.G.). The University of Chicago Press: Chicago, USA.
  • McGaughey, R. (2009). FUSION/LDV: Software for LiDAR Data Analysis and Visualization. US Department of Agriculture, Forest Service, Pacific Nortwest Research Station.
  • Reutebuch, S.E., McGaughey, R.J. and Strunk, J.L. (2010). Sherman Pass LIDAR Forest Inventory Project. United States Department of Agriculture, Forest Service. Pacific Northwest Research Station. 80.
  • Roussel, J.R., Caspersen, J., Béland, M., Thomas, S. and Achim, A. (2017). Removing bias from LiDAR-based estimates of canopy height: Accounting for the effects of pulse density and footprint size. Remote Sensing of Environment, 198: 1–16.
  • Wan Shafrina, W.M.J., Woodhouse, I.H., Silva, C.A., Omar, H. and Hudak, A.T. (2017). Modelling Individual Tree Aboveground Biomass Using Discrete Return LiDAR in Lowland Dipterocarp Forest of Malaysia. Journal of Tropical Forest Science 29(4): 465– 484.
  • Wan Shafrina, W.M.J., Woodhouse, I.H., Silva, C.A., Omar, H., Khairul Nizam, A.M., Hudak, A.T., Klauberg, C., Cardil, A. and Mohan, M. (2018). Improving Individual Tree Crown Delineation and Attributes Estimation of Tropical Forests Using Airborne LiDAR Data. Forests. 9(759).
  • Wyatt-Smith, J. (1987). Manual of Malayan silviculture for inland forest, Part 3-Chapter 8. Red meranti-keruing forest. FRIM Research Pamphlet No. 101; FRIM: Kepong, Malaysia.
  • Zolkos, S.G., Goetz, S.J. and Dubayah, R. (2013). A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128: 289–298.

Download Full Paper Here (Right-Click and Save As)

TOURIST SATISFACTION AT NATURE-BASED TOURISM DESTINATION AROUND KOTA KINABALU, SABAH

Hamimah Talib1*
1 Faculty of Science and Natural Resources,
Universiti Malaysia Sabah,
Kota Kinabalu, Sabah, Malaysia.

Corresponding author; Hamimah Talib, Cell; +6016 9980701, Email; hamima@ums.edu.my

ABSTRACT. Kota Kinabalu, Sabah has been famed as Nature Resort City where nature-based destinations in and around the city have been the major tourist attractions. Nonetheless, the question whether the visitors are satisfied with their experience at the major nature-based tourism destination or otherwise is still vague. The purpose of this study is to understand the recreational experience and satisfaction of tourist in selected nature-based tourism sites in Kota Kinabalu, Sabah. A mixedmethod approach incorporating quantitative data derived using Driver’s Recreation Experience Preference Scale, and qualitative data using Herzberg’s Critical Incident Technique were deployed. The sampling technique used in this study was purposive non-probability sampling with the participation of 240 tourists. Factor analysis was run on the quantitative dataset to derive the major outcome which is the set of profile on tourist recreational experience. While content analysis was conducted on the qualitative dataset to derive explanation for tourist satisfaction/dissatisfaction. Triangulation between the two types of datasets strengthens the major finding which is the tourist satisfaction in nature-based tourism destination around Kota Kinabalu, Sabah. The finding of this study is crucial for satisfaction enhancement and critical for identification of areas to be improved, subsequently solutions to be recommended.

KEYWORDS. Tourist Satisfaction, Nature-Based Tourism

 

REFERENCES

  • Ceballos-Lascurain, H. 1996. Tourism, Eco-Tourism and Protected Areas. IUCN. The World Conservation Union. Gland, Switzerland.
  • Chan, J.K.L. (2006). Herzberg’s Dual Factor Theory to Tourism Experiences: Satisfiers and Dissatisfiers. Asia-Euro Tourism, Culture and Gastronomy Conference 2006: West meets East: A Recipe of Success in this Era of Globalization? 9-10 November 2006, Taylors College, School of Hospitality and Tourism, Petaling Jaya, Malaysia.
  • Chan, J.K.L., and Baum, T. (2007). Ecotourists’ Perception of Ecotourism Experience in Lower Kinabatangan, Sabah, Malaysia. Journal of Sustainable Tourism, Vol 5 Issue 15, 2007.
  • Coakes, S.J. and Steed, L. (2007) SPSS: Analysis without Anguish Using SPSS Version 14.0 for Windows . Australia: John Wiley & Sons Australia, Ltd.
  • Dodds, R. and Butler, R. (2010). Barriers to implementing sustainable tourism policy in mass tourism destination. Tourismos, Vol.5, No.1, pp.35-54.
  • Driver, B.L., Tinsley, H.E.A., and Manfredo, M.J. (1991). The Paragraph About Leisure and Recreation Experience Preference Scales: Results from Two Inventories Designed to Assess the Breadth of the Perceived Psychological Benefits. In B.L.
  • Driver P.J. Brown, and G.L. Peterson (Eds), Benefits of Leisure (pp.263-286). State College, PA: Venture Publishing.
  • Herzberg, F. (1972). Work and the nature of man. Cleveland, OH: World Publishing.
  • Patton, M.Q. (2002) Qualitative Research and Evaluation Methods. Thousand Oaks, CA: Sage. Pearce, P.L. (2005). Tourist Behavior: Themes and Conceptual Schemes. Viva Books Private Limited, Ansari Road, New Delhi.
  • Pine, B.J. & Gilmore, J.H. 1999. The Experience Economy: Work is Theatre and Every Business A Stage. Boston, Massachussets, Harvard Business School Press.
  • Talib, H. (2011). Tropical forest recreation: Visitors’ experience and satisfaction in Kinabalu Park, Sabah. Universiti Malaysia Sabah.

Download Full Paper Here (Right-Click and Save As)

TOURIST SATISFACTION DIMENSION IN KINABALU PARK, SABAH, MALAYSIA

Timothy Ajeng Mereng1, Hamimah Talib1* and Jennifer Chan Kim Lian2
1 Forestry Complex, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
2 Borneo Tourism Research Centre, Faculty of Business, Economics and Accountancy, Universiti Malaysia Sabah

Corresponding author; Hamimah Talib, Cell; +6016 9980701, Email; hamima@ums.edu.my

ABSTRACT. This paper aims to identify the tourist satisfaction dimensions in Kinabalu Park as a World Heritage Site, to come out with the tourist satisfaction indicators for responsible rural tourism framework at Kinabalu Park, Sabah, Malaysia, in terms of satisfaction and dissatisfaction dimension. One of the data sources to achieve this aim is the in-depth interview session with the tourist in Kinabalu Park, specifically the mountain climbers. The interview was conducted with Herzberg’s Critical Incident Technique (CIT), which is a method that asks the respondents to recall their exceptionally good feeling as well as their exceptionally bad feeling during their experience in Kinabalu Park. The data were analyzed thematically based on Driver’s Recreation Experience Preference (REP) scale to identify the tourists’ satisfaction dimension. Our study found that “scenery enjoyment” was the most prevalent domain for a satisfying experience or the source of good feeling. Along with the “scenery enjoyment”, there were other three emerging experience domains that could contribute to understanding the tourist satisfaction dimensions in Kinabalu Park.

KEYWORDS. Tourist Satisfaction Dimension, Kinabalu Park

 

REFERENCES

  • Alegre, J. and Garau, J. (2010). Tourist Satisfaction and Dissatisfaction. Annals of Tourism Research, Vol. 37, No. 1, pp. 52-73.
  • Driver, B.L. (1983). Master list of items for Recreation Experience Preference scales and domains. Unpublished Document. USDA Forest Service, Fort Collins, CO: Rocky Mountain Forest and Range Experiment Station.
  • Faleye, O., Hoitash, R. and Hoitash, U. (2000), Improving your measurement of customer satisfaction. A guide to creating, conducting, analyzing, and reporting customer satisfaction measurement programs, Journal of the Academy of Marketing Science, Vol. 101, No. 2, p. 490.
  • Fuchs, M. and Weiermair, K. (2003). New perspectives of satisfaction research in tourism destinations. Tourism Review, 58(3), 6–14.
  • Fuller, J. and Matzler, K. (2007). Customer delight and market segmentation: An application of the three-factor theory of customer satisfaction on life style groups. Tourism Management, 29(1).
  • Timothy Ajeng Mereng, Hamimah Talib and Jennifer Chan Kim Lian Herzberg, F.W. (1966). Work and the nature of man. Cleveland: World Publishing. Kano, N. (1984). Attractive quality and must-be quality. Journal of the Japanese Society for Quality Control, 1(4), 39-48.
  • Kano, N., Seraku, N., Takahashi, F. and Tsuji, S. (1984). Attractive quality and must-be quality. Quality: The Journal of the Japanese Society for Quality Control, 14(April), 39-48.
  • Kitayama, K. (1991 ). Vegetation of Mount Kinabalu Park Sabah, Malaysia: A Project Paper. Protected Areas and Biodiversity Environment and Policy Institute.
  • Knopf, R.C. (1976). Relationships between desired consequences of recreation engagements and conditions in home neighborhood environments. Unpublished doctoral dissertation, University of Michigan, Ann Arbor.
  • Knopf, R.C. (1983). Recreational needs and behavior in natural settings. In J. F. Wohlwill (Ed.), Behavior and the Natural Environment, pp. 205-240. New York: Plenum Publishing.
  • Knopf, R.C., Driver, B.L. and Bassett, J.R. (1973). Motivations for fishing. In Transactions of the 28th North American Wildlife and Natural Resources Conference, pp. 191 -204.Wash., DC: Wildlife Management Institute.
  • Knopf, R.C., Peterson, G.L. and Leatherberry, E.C. (1983). Motives for recreational river floating: Relative consistency across settings. Leisure Sciences, 5(3), 231 -25
  • Lo, M.C., Songan, P., Mohamad, A.A. and Yeo, A.W. (2011). Rural destination and tourists’ satisfaction, Journal of Services Research. Pp. 58-74.
  • Matzler, K., Sauerwein, E. and Heischmidt, K. (2003). Importance-performance analysis revisited: The role of the factor structure of customer satisfaction. The Service Industries Journal, 23(2), 112–129.
  • Mereng, T.A., Talib, H. and Chan, J.K.L. (2016). Tourist Satisfaction Indicators for Responsible Rural Tourism Framework: A Case of Kinabalu National Park. Proceeding of the International Social Sciences Academic Conference (ISSAC 2016), ISBN 978-967-13637-5- 1.
  • Mittal, V., Ross, W.T. and Baldasare, P.M. (1998). The asymmetric impact of negative and positive attribute-level performance on overall satisfaction and repurchase intentions. Journal of Marketing, 62(1), 33–47.
  • Phillipps, A. and Liew, F. (2005). Globetrotter Visitor’s Guide – Kinabalu Park, New Holland Publishers (UK) Ltd. Slevitch, L. and Oh, H. (2010), Asymmetric relationship between attribute performance and customer satisfaction: A new perspective, International Journal of Hospitality Management, Vol. 29, No. 4, pp. 559-569.
  • Talib, H., Chan, J.K.L. and Mereng, T.A. (2014). Sustaining Tourist Satisfaction in Mt. Kinabalu, Sabah, EDP Sciences, SHS web of Conferences, Vol.12, 2014, http://dx.doi.org/10.1051/shsconf/20141201024, 19 Nov.2014.
  • Tontini, G. and Silveira, A. (2007), Identification of satisfaction attributes using competitive analysis of the improvement gap, International Journal of Operations Production Management, Vol. 27, No. 5, pp. 482-500.
  • Walker, R. (1985). An Introduction to Applied Qualitative Research, in R. Walker (ed) Applied Qualitative Research. Vermont, Gower Publishing. World Tourism Organization (WTO). (1985). Identification and Evaluation of those Components of Tourism Satisfaction and which can be Regulated and State Measures to Ensure Adequate Quality of Tourism Services. World Tourism Organisation, Madrid.

Download Full Paper Here (Right-Click and Save As)