Volume 42 (Issue 1), March 2021

– Libao Yang, Suzelawati Zenian*, Rozaimi Zakaria

– Carla Goncalves De Olievera Sarmento1 , Mohd Hardyianto Vai Bahrun1,**, Jidon Janaun1 , Awang Bono2,*, Duduku Krishnaiah3

– Siti Afida, I*; Noorazah, Z and Razmah, G

– Nur Syamimi Zainudin* and Zaihasra Azis

– Ling Sin Yi1 , Junaidi Asis1 & Baba Musta1*

Download Full Volume HERE


Carla Goncalves De Olievera Sarmento1 , Mohd Hardyianto Vai Bahrun1,**, Jidon Janaun1 ,

Awang Bono2,*, Duduku Krishnaiah3

1Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS,

88400 Kota Kinabalu, Sabah, Malaysia

2GRISM Innovative Solutions, Kota Kinabalu, Sabah, Malaysia

3Department of Chemical Engineering, Anurag University, Hyderabad, Telangana 500088, India

*Corresponding author. E-mail: awangbono@gmail.com

**Corresponding author. E-mail: hardyvai14@gmail.com

ABSTRACT. Fragrant rice is known to contain the aromatic compound of 2-Acetyl Pyrroline (2-AP). This compound has been known as a major compound that gives fragrant characteristics in rice. However, this compound is volatile and easily escapes from the rice upon the drying process. In order to recover the release of 2-AP from rice upon drying, a packed bed adsorption system is employed using treated agricultural waste as a solid adsorbent. The experimental adsorption study in a batch mode for 2-AP onto treated rice husk char (TRHC) was used as a case study for this present work. Influences of three operational parameters towards the dynamic adsorption of 2-AP onto TRHC in a packed bed column were investigated by measuring the breakthrough and saturation time and mass transfer zone. This study suggests the possibility of treated agricultural waste as an alternative to capture the lost 2-AP during the paddy drying process.

KEYWORDS. Adsorption; Aromatic rice; Breakthrough curve; Treated rice husk; Simulation



  • Ahmed, S., Unar, I. N., Khan, H. A., Maitlo, G., Mahar, R. B., Jatoi, A. S., Memon, A. Q., & Shah, A. 1.(2020). Experimental study and dynamic simulation of melanoidin adsorption from distillery effluent. Environmental Science and Pollution Research, 27(9), 9619–9636.
  • AspenONE. (2009). AspenONE v7.3 Reference Guide. AspenTech Inc.
  • Bahrun, M. H. V., Kamin, Z., Anisuzzaman, S. M., & Bono, A. (2021). Assessment of Adsorbent for Removing Lead (Pb) Ion in an Industrial-Scaled Packed Bed Column. Journal of Engineering Science and Technology, 16(2), 1213–1231.
  • Baradi, M. A. U., & Elepano, A. R. (2012). Aroma Loss in Rice as Affected by Various Conditions during Postharvest Operations. Philippine Agricultural Scientist, 95(3), 260–266.
  • Bono, A. (1989). Sorptive Separation of Simple Water Soluble Organics (Doctoral dissertations, University of Surrey, Guildford, United Kingdom). Retrieved from https://openresearch.surrey.ac.uk/esploro/outputs/doctoral/Sorptive-Separation-of-Simple Water-Soluble-Organics/99511759402346#files_and_links
  • Coker, A. K. (2007). Ludwig’s Applied Process Design for Chemical and Petrochemical Plants (4th ed.). Gulf Professional Publishing. da Rosa, C. A., Ostroski, I. C., Gimenes Meneguin, J.,
  • Gimenes, M. L., & Barros, M. A. S. D. (2015). Study of Pb2+ adsorption in a packed bed column of bentonite using CFD. Applied Clay Science, 104, 48–58.
  • Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). A new method for prediction of binary gas phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27. https://doi.org/10.1021/ie50677a007
  • Glueckauf, E. (1955). Theory of chromatography. Part 10: Formulae for diffusion into spheres and their application to chromatography. Transactions of the Faraday Society, 51, 1540–1551.
  • Green, D. W., & Perry, R. H. (2008). Perry’s Chemical Engineers’ Handbook (8th ed). The McGraw Hill Companies, Inc.
  • Hanafy, H., Sellaoui, L., Thue, P. S., Lima, E. C., Dotto, G. L., Alharbi, T., Belmabrouk, H., Bonilla -
  • Petriciolet, A., & Lamine, A. Ben. (2019). Statistical physics modeling and interpretation of the adsorption of dye remazol black B on natural and carbonized biomasses. Journal of Molecular Liquids, 299, 112099.
  • Hien, N. L., Yoshihashi, T., Sarhadi, W. A., & Hirata, Y. (2006). Sensory Test for Aroma and Quantitative Analysis of 2-Acetyl-1-Pyrroline in Asian Aromatic Rice Varieties. Plant Production Science, 9(3), 294–297. https://doi.org/10.1626/pps.9.294
  • Hymavathi, D., & Prabhakar, G. (2019). Modeling of cobalt and lead adsorption by Ficus benghalenesis L. in a fixed bed column. Chemical Engineering Communications, 206(10), 1264–1272.
  • Jangde, V., Umathe, P., Antony, P. S., Shinde, V., & Pakade, Y. (2019). Fixed-bed column dynamics of xanthate-modified apple pomace for removal of Pb(II). International Journal of Environmental Science and Technology, 16(10), 6347–6356.
  • Kongkiattikajorn, J. (2008). Effect of Storage Time and Temperature on Volatile Aroma Compounds and Physicochemical Properties of Rice. Kasetsart Journal – Natural Science, 42, 111–117.
  • Nadaf, A. B., Krishnan, S., & Wakte, K. V. (2006). Histochemical and biochemical analysis of major aroma compound (2-acetyl-1-pyrroline) in basmati and other scented rice (Oryza sativa L.). Current Science, 91(11), 1533–1536.
  • Sarmento, C. G. D. O. (2021). Adsorption of 2-Acetyl-1-Pyrroline (2-AP) by Using Rice Husk Chars (Unpublished master’s thesis). Universiti Malaysia Sabah, Sabah, Malaysia.
  • Suzuki, M., & Kawazoe, K. (1975). Effective Surface Diffusion Coefficients of Volatile Organics on Activated Carbon during Adsorption from Aqueous Solution. Journal of Chemical Engineering of Japan, 8(5), 379–382. https://doi.org/10.1252/jcej.8.379
  • Tan, W.-H., Bahrun, M. H. V., Surugau, N., & Bono, A. (2020). Evaluation of Adsorption Dynamic Retention of Copper Ion in Porous Agricultural Soil. Transactions on Science and Technology, 7(3), 90–100.
  • Yoshihashi, T., Huong, N. T. T., Surojanametakul, V., Tungtrakul, P., & Varanyanond, W. (2005). Effect of Storage Conditions on 2-Acetyl-1-pyrroline Content in Aromatic Rice Variety, Khao Dawk Mali 105. Journal of Food Science, 70(1). https://doi.org/10.1111/j.1365- 2621.2005.tb09061.x

Download Full Paper Here (Right-Click and Save As)


Siti Afida, I*; Noorazah, Z and Razmah, G

1Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board,

6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

*Correspomdimg author. Email: siti.afida@mpob.gov.my


ABSTRACT. The critical micelle concentration (CMC) is the concentration of surfactants above which micelles are formed. The effects of CMC of methyl ester sulfonates (MES) on ecotoxicological behaviour of freshwater organisms in predicting the risk levels contributed from the surfactant used were determined. The surface tension of palm-based MES with various carbon chain lengths (C12, C14 and C16) was measured to determine the CMC. Ecotoxicity tests were conducted on three different aquatic organisms: green algae (Raphidocelis subcapitata), freshwater crustacean (Daphnia magna) and freshwater fish (Tilapia nilotica). The effective concentration of MES that caused 50% fish mortality (LC50), crustacean immobilization (EC50) and algae inhibition (EC50) was determined. Through surface tension analyses, the CMC obtained for MES C12, C14 and C16 was 1000 mg/L, 900 mg/L and 12 mg/L, respectively. The LC50 of MES C12, C14 and C16 were 391 mg/L, 22.6 mg/L and 12.6 mg/L, respectively, in fish. The crustacean EC50 of MES C12, C14 and C16 were >100 mg/L, 77.6 mg/L, and 1.15 mg/L. Meanwhile, algae EC50 of MES C12, C14 and C16 was 541 mg/L, 399 mg/L and >10 mg/L, respectively. Relative comparison showed that D. magna was observed to be more sensitive compared to R. subcapitata and T. nilotica towards MES of the same chain length. A linear relationship was observed between CMC and ecotoxicity values. The lower the CMC value, the lower is the LC50 or EC50 value and the surfactant becomes more toxic. It is suggested that the CMC value can be used as a toxicity indicator for anionic surfactant by considering that the EC50 value of a surfactant will be reached before its CMC value.

KEYWORDS: CMC, Ecotoxicity, Aquatic organisms, Environment


  • Becher, P., (1984). Hydrophile−lipophile balance: history and recent developments (Langmuir lecture, 1983). J. Dispersion Sci. Technol 5: 81–96.
  • Calamari, D.; Marchetti, R., (1973). The toxicity of mixture of metals and surfactants to rainbow trout (Salmo gairdneri rich.). Water Research, 7: 1453-1464.
  • Fendinger, N. J., (1994) Environmental behaviour and fate of anionic surfactants. Environmental Chemistry of Lakes and Reservoirs (Baker, L A ed.). American Chemical Society, Washington, p. 528-557.
  • Fernández-Serrano, M.; Jurado, E.; Fernández-Arteaga, A.; Ríos, F.; Lechuga, M., (2014). Ecotoxicological assessment of mixtures of ether carboxylic derivative and amine-oxide-based non-ionic surfactants on the aquatic environment. Journal of Surfactants and Detergents, 17: 1161-1168.
  • Garcia, M. T.; Ribosa, I.; Guindulain, T.; Sanchez-Leal, J.; Vives-Rego, J., (2001). Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment. Environ. Pollut, 111: 169-75.
  • GESAMP, (2014). Revised GESAMP Hazard Evaluation Procedure for Chemical Substances Carried by Ships, International Maritime Organization.
  • Hisano, N.; Oya, M., (2010). Effects of surface activity on aquatic toxicity of binary surface mixtures. Journal of oleo science, 59: 589-599.
  • Inácio, Â. S.; Mesquita, K. A.; Baptista, M.; Ramalho-Santos, J.; Vaz, W. L.; Vieira, O. V., (2011). In vitro surfactant structure-toxicity relationships: Implications for surfactant use in sexually transmitted infection prophylaxis and contraception. PLoS One, 6:19850.
  • Ivanković, T.; Hrenović, J., (2010). Surfactants in the environment. Archives of Industrial Hygiene and Toxicology, 61: 95-110.
  • Jurado, E.; Fernández-Serrano, M.; Lechuga, M.; Ríos, F., (2012a). Environmental impact of ether carboxylic derivative surfactants. Journal of Surfactants and Detergents, 15: 1-7.
  • Jurado, E.; Fernández-Serrano, M.; Olea, J. N.; Lechuga, M.; Jiménez, J.; Ríos, F., (2012b). Acute toxicity of alkylpolyglucosides to Vibrio fischeri, Daphnia magna and microalgae: a comparative study. Bulletin of environmental contamination and toxicology, 88: 290-295.
  • Market Research Store (2015b). Global Fatty Methyl Ester Sulfonates (FMES) Market is expected to Reach USD 1.58 Billion in 2020 [Online]. Available: http://www.marketresearchstore.com/news/global-fatty-methyl-ester-sulfonates-fmes-market is-45 [Accessed 15/8/2015 Market Research Store, (2015a). Global Fatty Methyl Ester Sulfonates (FMES) Market for Household Detergents, Personal Care Products and Other Applications, 2014 – 2020.
  • Pavlić, Ž.; Vidaković-Cifrek, Ž.; Puntarić, D., (2005). Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere, 61: 1061-1068.8
  • Potokor, M. S., (1992). Acute, subacute and chronic toxicity data on anionics. Anionic Surfactants, Biochemistry, Dermatology (Gloxhuber, C and Kunstler, K eds.). 2nd ed., Surfactant Science Series, 43: 81-116.
  • Razmah, G.; Siti Afida, I.; Noorazah, Z.; Hazimah, A. H.; (2016). Acute ecotoxicity (48-hr EC50) assessment of palm-based methyl ester sulphonates (MES) towards Daphnia magna. Journal of Oil Palm Research, 28: 74-80.
  • Razmah, G.; Siti Afida, I.; Zulina, A.M.; Noorazah, Z.; Hazimah, A.H., (2015). A comparative study of the ecotoxicity of palm-based methyl ester sulphonates (MES) to Tilapia and Daphnia magna. Journal of Oil Palm Research, 28: 387-392.
  • Ríos, F.; Lechuga, M.; Fernández-Serrano, M.; Fernández-Arteaga, A., (2017). Aerobic biodegradation of amphoteric amine-oxide-based surfactants: Effect of molecular structure, initial surfactant concentration and pH. Chemosphere, 171: 324-331.
  • Sanchez Leal, J.; González, J. J.; Comelles, F.; Campos, E.; Ciganda, T., (1991). Biodegradability and Toxicity of anionic surfactant. Acta hydrochim hydrobiol, 19: 703-709.
  • Siti Afida, I.; Razmah, G.; Zulina, A.M.; Noorazah, Z., (2017). Ecotoxicology Study of Various Homologues of Methyl Ester Sulfonates (MES) Derived from Palm Oil. Journal of Surfactants and Detergents, 20: 1467–1473.
  • Toshiharu, T.; Horoshi, O.; Kazuaki, M.; Yutaka, T., (2006). Ecotoxicity of Tetradecanoic Acid, 2-sulfo-, 1-methylester, Sodium Salt (C14MES). Journal of Oleo Science, 55: 121- 126.

Download Full Paper Here (Right-Click and Save As)


Nur Syamimi Zainudin* and Zaihasra Azis

1Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, Jengka Campus,

26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

* Corresponding author. Email: nursyamimizainudin@uitm.edu.my

ABSTRACT. Ascorbic acid, also known as Vitamin C cannot be synthesized by humans. Ascorbic acid is commonly found in a variety of vegetables and fruits such as mangoes, oranges, broccolis and lettuce. Hence, vegetables and fruits become the main sources of ascorbic acid to meet dietary intake. The differential pulse anodic stripping voltammetry (DPASV) technique using glassy carbon electrode (GCE) as a working electrode and phosphate buffer at pH 4.2 as a supporting electrolyte has been proposed for ascorbic acid determination in natural and commercial fruit juices. The optimum instrumental conditions for electroanalytical determination of ascorbic acid by the proposed DPASV technique were initial potential (Ei) = 0 V, end potential (Ef)= 0.8 V, accumulation time (tacc) = 60 s, scan rate (v) = 0.125 V/s and pulse amplitude = 0.150 V. The anodic peak appeared at 0.3598 V. The curve was linear from 0.028 to 1.703 mM (R2=0.9999) with a detection limit of 0.0114 mM. The precisions in terms of relative standard deviation (RSD) were 1.30%, 0.50% and 0.06%, respectively. The ruggedness of the proposed DPASV technique was tested with statistical F-test. Satisfactory recoveries ranging from 73.65±1.70% to 101.93±1.65% were obtained for three different known concentrations of AA in the fruit juice samples. It can be concluded that the proposed technique is precise, accurate, rugged, low cost, fast and has the potential to be an alternative method for routine analysis of ascorbic acid in natural and commercial fruit juices.

KEYWORDS: Ascorbic Acid, Commercial Fruit Juice, Glassy Carbon Electrode, Voltammetry



  • Aabraha, T. & Sargawie, A. (2014). Assessment of some selected Beverages and Fresh Edible Vegetables as Nutritional Source of Vitamin C (Ascorbic Acid) by Cyclic and Square Wave Voltammetry. International Journal of Science and Engineering Investigation 26(3): 39-49.
  • Bergamini, M.F., Santos, D.P. & Zanoni, M.V.B. (2010). Determination of Major and Minor Elements in through ICP-AES. Environmental Engineering and Management Journal 7(6): 805-808.
  • De Lima, F., Gozzi, F., Fiorucci, A.R., Cardoso, C.A.L., Arruda, G.J. & Ferreira, V.S. (2011). Determination of linuron in water and vegetable samples using stripping voltammetry with carbon paste electrode. Talanta 83:1763-1768.
  • Dioha, I.J., Olugbemi, O., Onuegbu, T. & Shahru, Z. (2011). Determination of some tropical fruits by iodometric titration. International Journal of Biological and Chemical Sciences 5(5): 2180-
  • Farahi, A., Lahrich, S., Achak, M., El Gaini, L., Bakasse, M. & El Mhammedi, M. A. (2014). Parameters affecting the determination of paraquat at silver rotating electrodes using differential pulse voltammetry. Analytical Chemistry Research 1: 16-21.
  • Gazdik, Z., Zitka, O., Petrlova, J., Adam, V., Zehnalek, J., Horna, A., Reznicek, V., Beklova, M. & Kizek, R. (2008). Determination of Vitamin C (Ascorbic Acid) Using High Performance Liquid Chromatography Coupled with Electrochemical Detection. Sensors 8: 7097–7112.
  • Geremedhin, W., Amare, M. & Admassie, S. (2013). Electrochemically pretreated glassy carbon electrode for electrochemical detection of fenitrothion in tap water and human urine. Electrochimica Acta 87: 749 – 755.
  • Jain, R. & Rather, J.A. (2011). Stripping voltammetry of tinidazole in solubilized system and biological fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 378: 27-
  • Jain, R. & Sharma, S. (2012). Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems. Journal of Pharmaceutical Analysis 2(1): 56-61.
  • Klimczak, I. & Gliszczy´nska-Swigło, A. (2015). Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chemistry 175: 100–105.
  • Liamas, N.E., Nezio, M.S. & Band, B.S.F. (2011). Flow-injection spectrophotometric method with on line photodegradation for determination of ascorbic acid and total sugars in fruit juices. Journal of Food Composition and Analysis 24: 127-130.
  • Okiei, W., Ogunlesi, M., Azeez, L., Obakachi, V., Osunsansi, M. & Nkenchar, G. (2009). The Voltametric and Titrimetric Determination of Ascorbic Acid Levels in Tropical Fruit Samples. International Journal of Electrochemical Science 4: 276-287.
  • Miranda, M. P., del Rio, R., del Valle, M. A., Faundez, M. & Armijo, F. (2012). Use of fluorine-doped tin oxide electrodes for lipoic acid determination in dietary supplements. Journal of Electroanalytical Chemistry 668: 1 – 6.
  • Morris, J.R., Bates, R.P. & Philip, G.G. (2001). Principles and Practices of small and medium scale fruit juice processing. United State.
  • Ngai, K.S, Tan, W.T, Zulkarnain, Z., Ruzniza, M.Z. & Mohammed, Z. (2013). Voltammetry Detection of Ascorbic Acid at Glassy Carbon Electrode Modified by Single-Walled Carbon Nanotube/Zinc Oxide. International Journal of Electrochemical Science 8: 10557-10567.
  • Nur Syamimi, Z., Norbaitina, S. & Megat, A.K.M.H. (2020). Validation and Determination of Ascorbic Acid in Multivitamin Tablets by Differential Pulse Anodic Stripping Voltammetric Technique at a Bare Glassy Carbon Electrode. Malaysian Journal of Analytical Science 24 (6): 838-847.
  • Nur Syamimi, Z., Mohamad Hadzri, Y. & Noor Zuhartini, M.M. (2016). Voltammetric determination of Reactive Black 5 in waste water samples from the batik industry. Malaysian Journal of Analytical Science 20: 1254-1268.
  • Nweze, C.C., Abdulganitu, M.G & Erhabor, O.G. (2015). Comperative analysis of vitamin C in fresh fruit juices of Malusdomestica, Citrus Sinensi, AnanasComosus and CitrullusLanatus by Iodometric titration. International Journal of Science 4(1): 17-22.
  • Ogunlesi, M., Okiei, W., Azeez, L., Obakachi, V., Osunsanmi, M. & Nkenchar, G. (2010). Vitamin C Contents of Tropical Vegetables and Food Determined by Voltammetric and Titrimetric Methods and Their Relevance to the Medical Uses of the Pants. International Journal of Electrochemical Sciences 5: 105-115.
  • Packer, L., and Fuchs, J. Vitamin C in health and disease. Marcel Dekker, Inc. New York, Basel, Hong Kong 1997.
  • Pisoschi, A.M., Pop, A., Negulescu, G.P. & Pisoschi, A. (2011). Determination of Ascorbic Acid Content of Some Fruit Juices and Wine by Voltammetry Performed at Pt and Carbon Paste Electrodes. Molecules 16: 1349-1365.
  • Radi A.E., Nassef, H.M. & El Basiony, A. (2011). Electrochemical behaviour and analytical determination of Reactive Red 231 on glassy carbon electrode. Dyes and Pigments 99: 924-
  • Raghu, V., Platel, K. & Srinivason, K. (2007). Comparison of Ascorbic Acid Content of Some Fruit Juices and Wine by Voltammetry Performed at Pt and Carbon Paste Electrodes. Molecules 16:1349-1365.
  • Sadia, G., Azizuddin., Rafi, A., Kousar, Y., Fareed, A. & Iftekhar, S. (2014). Determination of Ascorbic Acid Content of Some Capsicum Cultivars by Cyclic Voltammetry performed at GCE by External Standard Series Calibration Method. International Journal of Electrochemical Science 9: 5751-5762.
  • Sezgin, H., V., Dilgin, Y. & Gokcel, H., I. (2016). Adsorption and deposition-assisted anodic stripping voltammetry for determination of antimony (III) in presence of hematoxylin on glassy carbon electrode. Talanta 164: 677-683.
  • Sona, S., Jiri, M., Jiri, S., Mojmir, B., Jindrich, K. & Tunde, J. (2015). Determination of Ascorbic Acid by Electrochemical Techniques and other Methods. International Journal of Electrochemical Science 10: 2421-2431.
  • Skrovanko, S., Micek, J., Sochar, J., Baron, M, M Kynicky, J. & Jurikova, T. (2015). Determination of ascorbic acid by Electrochemical Technique and other methods. International Journal of Electrochemical Sciences 10: 2421-2431.
  • Tareen, H., Mengal, F., Masood, Z., Mengal, R., Ahmed, S., Bibi, S., Shoaib, S., Sami, U., Mandokhail, F., Riaz, M., Farhan, N & Nawaz, Z. (2015). Determination of vitamin c content in Citrus Fruits and in Non-Citrus Fruits by Titrimetric Method with Special Reference to their nutritional importance in human diet. Biological Forum-An International Journal 7(2): 367-
  • Tyagi, G., Jangir, D.K., Singh, R., Mehrotra, R., Ganaseran, R. & Gopal, E.S.R. (2014). Rapid determination of main constituents of packed juices by reverse phase-high performance liquid chromatography: an insight in to commercial fruit drinks. Journal of Food Science and Technology 51(3): 476–484.
  • Valente, A., Albuquerque, T.G., Ana, S.S. & Costa, H.S. (2011). Ascorbic acid content in exotic fruits. A contribution to produce quality data for food composition database. Food Research International 44: 2237-2242.
  • Yilmaz, S., Sadikoglu, M., Saglikoglu, G., Yagmur, S. & Askin, G. (2008). Determination of Ascorbic Acid in Tablet Dosage Forms and Some Fruit Juices by DPV. International Journal of Electrochemical Science 3: 1534-1542.
  • Zhang, Y., Zhou, W., Yan, J., Liu, M., Zhou, Y., Shen, X., Ma, Y., Feng, X., Yang, J. & Li, G. (2018). A review of the extraction and determination methods of thirteen essential vitamins to the human body: An update from 2010. Molecules 23: 1-25.

Download Full Paper Here (Right-Click and Save As)


Ling Sin Yi1 , Junaidi Asis1 & Baba Musta1*

1Geology Program, Faculty of Science and Natural Resources,

Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

* Corresponding author. Email: babamus@ums.edu.my

ABSTRACT. A total of fifty-three (53) sediment samples were collected from Usukan coastal beach to study the potential of pollution due to heavy metals in the marine ecosystem. The sediment samples were collected along the coastal beach using a core sampler. The ICP-OES analysis was used to identify the concentration of heavy metals in the marine sediment samples. The results of pH analysis showed the increase of pH from 5.69 to 8.48 from inland into the sea. The lowest moisture content was 4.99%, whereas the highest was 48.75%. The organic matter ranges from 0.30 to 6.73%. The sediment texture varies from sandy, sandy loam, and sandy clay loam texture. The decreasing rank ing order of heavy metals concentration is Fe (4476-29829 ppm) followed by Al (5803-8524 ppm) and Mn (103-504 ppm), which are still within the background values and standard limits. The assessment of Fe, Al and Mn contamination in sediment samples was performed by comparing with the allowable range of average background values and the standard limits from Sediment Quality Guideline (SQG) in marine sediment. In conclusion, the results of quality assessment using the geoaccumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), and pollution load index (PLI) showed that the sediment from Usukan beach has a very low contamination level that causes only mild pollution.

KEYWORDS. Geochemistry, Heavy Metal, Sediment Quality, Marine Environment



  • Abolfazl, N. & Ahmad, I. 2012. Sediment quality assessment of Klang Estuary, Malaysia. Aquatic Ecosystem Health & Management: 15(3): 287-293.
  • Ahmed, A. & Askri, B. 2016. Seawater Intrusion Impacts on the Water Quality of the Groundwater on the Northwest Coast of Oman. Water Environment Research: 88: 732-740.
  • Allaway, W.H. 1957. pH, soil acidity and plant growth. Soil: 67-71.
  • Amir, M., Iqbal, M., Zainal, S. & Manap, A. 2020. Static Adsorption of Amphoteric Surfactant. Offshore Technology Conference.
  • Atherton, R.J., Baird, A.J. & Wiggs, G.F.S. 2001. Intertidal dynamics of surface moisture content on a meso-tidal beach. J. Coastal Res.: 17: 482–489.
  • Ball, J. 2001. Soil and Water Relationships. Noble Research Institute, 1 Sep 2001, Retrieved: https://www.noble.org/news/publications/ag-news-and-views/2001/september/soil-and-waterrelationSSships/.
  • Bauer, A., Radziejewska, T., Liang, K., Kowalski, N., … & Waniek, J.J. 2013. Regional differences of hydrographical and sedimentological properties in the Beibu Gulf, South China Sea. Journal of Coastal Research: 66 (10066): 49-71.
  • Birch, G. 2018. A review of chemical-based sediment quality assessment methodologies for the marine environment. Marine pollution bulletin: 133: 218-232.
  • Boyle, E.A. 1983. Manganese carbonate overgrowths on foraminifera tests. Geochimica et Cosmochimica Acta: 47(10). The Quality Assessment of Heavy Metals in Marine Sediments from Usukan Coastal Beach, Kota Belud, Sabah
  • BSI. 1990. BS1377: 1990 British Standard Methods of Tests for Soils for Civil Engineering Purposes. London: British Standard Institution (BSI).
  • Canfield, D. 1989. Reactive iron in marine sediments. Geochimica et cosmochimica acta.: 53: 619-32.
  • Chen, S., Takematsu, N., Ambe, S., Ament, A. & Ambe, F. 1994. A Mössbauer spectroscopy study on iron in marine sediments. Hyperfine Interactions: 91: 759-763.
  • Chuan, O.M. & Yunus, K. 2019. Sediment and organisms as marker for metal pollution. In Monitoring of Marine Pollution. IntechOpen: 1-19.
  • Clement, J.F. & Keij, J. 1958. Geology of the Kudat Peninsula, North Borneo (Compilation) GR783.
  • Unpublished Reports of the Royal Dutch Shell Group of Companies in British Borneo.
  • Csuros, M. & Csuros, C. 2002. Environmental Sampling and Analysis for Metals. Boca Raton, USA: Lewis Publishers.
  • Collenette, P. 1957. Notes on the geology of the headwaters of the Labuk, Sugut and Karamuak Rivers. Brit. Borneo Geol. Suv. Ann. Rep.:153-162.
  • Dezileau, L. & Pizarro, C. & Rubio, M. 2007. Sequential extraction of iron in marine sediments from the Chilean continental margin. Marine Geology – MAR GEOLOGY: 241: 111-116.
  • Ding, Z., Koriem, M.A., Ibrahim, S.M., Antar, A.S., Ewis, M.A., He, Z. & Kheir, A. M. 2020. Seawater intrusion impacts on groundwater and soil quality in the northern part of the Nile Delta, Egypt. Environmental Earth Sciences: 79(13): 1-11.
  • Djkstra, F. & Fitzhugh, R. 2003. Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the North Eastern United States. Geoderma: 114: 33-
  • Durães, N., Novo, L.A., Candeias, C. & Da Silva, E.F. 2018. Distribution, transport and fate of pollutants. In Soil pollution. Academic Press: 29-57.
  • Force, E.R. & Cox, L.J. 1991. Manganese contents of some sedimentary rocks of Paleozoic age in Virginia. US Government Printing Office.
  • Förstner, U. 2006. Contaminated sediments: lectures on environmental aspects of particle-associated chemicals in aquatic systems. Chicago: The University of Chicago Press Vol. 21.
  • Gopal, V., Achyuthan, H. & Jayaprakash, M. 2017. Assessment of trace elements in Yercaud Lake sediments, southern India. Environ Earth Sci.: 76: 63.
  • Govind, A.V., Behera, K., Dash, J.K., Balakrishnan, S., Bhutani, R., Managave, S. & Srinivasan, R. Trace element and isotope Geochemistry of Neoarchean carbonate rocks from the Dharwar craton, southern India: Implications for depositional environments and mantle influence on ocean chemistry. Precambrian Research: 357.
  • Grecco, L., Gómez, E., Botté, S., Marcos, Á., Marcovecchio, J. & Cuadrado, D. 2011. Natural and anthropogenic heavy metals in estuarine cohesive sediments: Geochemistry and bioavailability. Ocean Dynamics – OCEAN DYN: 61: 285-293.
  • Gui, Y., Zhang, Q., Qin, X. & Wang, J. 2021. Influence of Organic Matter Content on Engineering Properties of Clays. Advances in Civil Engineering 2021: 1-11.
  • Gwak, Y.S. & Kim, S.H. 2016. Factors Affecting Soil Moisture Spatial Variability for a Humid Forest Hillslope. Hydrological Processes.
  • Hakanson, L. 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water. Res.: 14: 975–1001.
  • Hall, R. & Breitfeld, H.T. 2017. Nature and Demise of the Proto-South China Sea. Bulletin of the Geological Society of Malaysia: 63.
  • Han, F.X., Kingery, W.L. & Selim, H.M. 2001. Accumulation, redistribution, transport, and bioavailability of heavy metals in waste-amended soils. CRC Press: In Trace Elements in Soil: 161-190.
  • Hart, B.T. 1982. Uptake of trace metals by sediments and suspended particulates: A review. Hydrobiol.: 91: 299–313.
  • Jayamurali, D., Varier, K., Liu, W., Jegadeesh, P.H., Yaacov, B.D., Shen, X. & Gajendran, B. 2021. An Overview of Heavy Metal Toxicity. ReseachGate.
  • Junaidi, A. & Basir, J. 2012. Aptian to Turonian radiolaria from the Darvel Bay Ophiolite Complex, Kunak, Sabah. Bulletin of Geol. Soc. Malaysia: 58: 89-96.
  • Le Pera, E., Arribas, J., Critelli, S. & Tortosa, A. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): implications for provenance studies. Sedimentology: 48(2): 357-378.
  • Li, N., Feng, D., Wan, S., Peckmann, J., Guan, H., Wang, X., … & Chen, D. 2021. Impact of methane seepage dynamics on the abundance of benthic foraminifera in gas hydrate bearing sediments: New insights from the South China Sea. Ore Geology Reviews: 104247.
  • Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X. & Han, W. 2019. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal: 28(4): 380-394.
  • Lindsay, W.L. 1979. Chemical equilibria in soils. New York: John Wiley & Sons.
  • Luo, J.Z., Sheng, B.X. & Sheng, Q.Q. 2020. A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion. Journal of Fuel Chemistry and Technology: 48 (11).
  • Maher, W., Batkey, G.E. & Lawrence, I. 1999. Assessing the health of sediment ecosystems: Use of chemical measurements. Freshwater Biol.: 41: 361–372.
  • McCauley, A., Jones, C. & Olson-Rutz, K. 2017. Soil pH and Organic Matter. Nutrient Management: 8: 1-4.
  • Moore, C. & Bostrom, K. 1978. The elemental compositions of lower marine organisms. Chemical Geology – CHEM GEOL: 23: 1-9.
  • Muli, M. M. 2017. Metals in Plants and Soils Along a Section of Nairobi. School of Pure and Applied Science, Kenyatta University.
  • Müller, G. 1969. Index of geoaccumulation in the sediments of the Rhine River. Geojournal: 2:108–
  • Myung, C. J. 2008. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine. US National Library of Medicine: 8(4): 2413-2423.
  • Namikas, S.L., Edwards, B.L., Bitton, M.C.A., Booth, J.L. & Zhu, Y. 2010. Temporal and spatial variability in the surface moisture content of a fine-grained beach. Geomorphology: 114: 303–
  • Narejo, A.A., Shar, A.M., Fatima, N. & Sohail, K. 2019. Geochemistry and origin of Mn deposits in the Bela ophiolite complex, Balochistan, Pakistan. Journal of Petroleum Exploration and Production Technology: 9(4): 2543-2554.
  • Neff, J. M. 2002. Bioaccumulation in Marine Organisms. Massachusetts. Elsevier Publisher: 175-189.
  • Nicholson, K., Hein, J.R., Biilm, B. & Dasgupta, S. 1997. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society of London Special Publication: 119: 370.
  • NOAA, U. 1999. Screening Quick Reference Tables (SQuiRTs). Coastal protection and restoration division. National Marine Fisheries Service (NMFS). US Dep. Commer. National Oceanic and Atmospheric Adminstration (NOAA) Tech. Memo.: Our Living Oceans. Report on the status of US living marine resources, 1999.
  • Prasad, R. and J.F. Power. 1997. Soil Fertility Management for Sustainable Agriculture. New York: Lewis Publishers.
  • Sanudin, T. & Baba, M. 2007. Pengenalan kepada Stratigrafi. Kota Kinabalu: Penerbit Universiti Malaysia Sabah.
  • Seaward, M.R.D. & Richardson, D.H.S. 1989. Atmospheric sources of metal pollution and effects on vegetation. Heavy metal tolerance in plants: Evolutionary aspects: 75-92.
  • Schmutz, P. & Namikas, S. 2018. Measurement and modeling of the spatiotemporal dynamics of beach surface moisture content. Aeolian Research: 34: 35–48.
  • Sparks, D.L. 2003. Environmental soil chemistry. London: Elsevier, Academic Press.
  • Sugisaki, R., Sugitani, K. & Adachi, M. 1991. Manganese carbonate bands as an indicator of hemipelagic sedimentary environments. The Journal of Geology: 99(1): 23-40.
  • Taylor, K.G. & Macquaker, J.H. 2011. Iron minerals in marine sediments record chemical environments. Elements: 7(2): 113-118.
  • Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. & Sutton DJ. 2012. Heavy metal toxicity and the environment. Exp Suppl.: 101:133-64.
  • Tomlinson, D.L., Wilson, J.G., Harris, C.R. & Jeffrey, D.W. 1980. Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen: 33(1-4), 566-575.
  • Tongkul, F. 2006. The structural style of Lower Miocene Sedimentary Rocks, Kudat Peninsula, Sabah. Bulletin of the Geol. Soc. of Malaysia: 49: 119-124.
  • Tsai, H.H. & Schmidt, W. 2020. pH-dependent transcriptional profile changes in iron deficient Arabidopsis roots. BMC Genomics: 21: 694.
  • Turekian, K.K. & Wedepohl, K.H. 1961. Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull.: 72(2): 175-92.
  • United States Department of Agriculture, Soil Conservation Service (USDA). 1975. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Soil Surv. Staff. U.S. Dep. Agric. Handbook: 436.
  • U.S. Environmental Protection Agency. 2014. Method 6010D (Revision 4): Inductively coupled-plasma atomic emission spectrometry. Washington, DC: Environmental Protection Agency.
  • Vallius, H., Ryabchuk, D. & Kotilainen, A. 2007. Distribution of heavy metals and arsenic in soft surface sediments of the coastal area off Kotka, northeastern Gulf of Finland, Baltic Sea. Geological Survey of Finland Special Paper: 45: 33–48.
  • Xiang, M., Li, Y., Yang, J., Lei, K., Li, Y., Li, F., Zheng, D., Fang, X. & Cao, Y. 2021. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution: 278.
  • Yang, W., Cao, Z., Zhang, H. & Lang, Y. 2021. A national wide evaluation of heavy metals pollution in surface sediments from different marginal seas along China Mainland, Regional Studies in Marine Science: 42.
  • White, W.M. 2020. Geochemistry: The Oceans as a Chemical System. Oxford: John Wiley & Sons.
  • Wuana, R. & Okieimen, F. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ResearchGate: ISRN Ecology
  • Zhang, X., Zhong, T., Liu, L. & Ouyang, X. 2015. Impact of Soil Heavy Metal Pollution on Food Safety in China. PLoS ONE: 10(8).
  • Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W. & Marhaba, T. 2018. pH effect on heavy metal release from a polluted sediment. Journal of Chemistry.

Download Full Paper Here (Right-Click and Save As)


Libao Yang, Suzelawati Zenian*, Rozaimi Zakaria

Faculty of Science and Natural Resources, Universiti Malaysia Sabah,

88400 Kota Kinabalu, Sabah, Malaysia.

* Corresponding author: Suzelawati Zenian

Email: suzela@ums.edu.my

ABSTRACT. Image enhancement is a significant field in image processing. This paper proposes an enhancement method based on an S-sharp function of grayscale transformation and neighborhood information. Firstly, a function is established based on the sine function. Then, the image threshold is added into the function. Finally, the result grayscales are modified by parameter, where parameter is determined by the image pixel neighborhood information. In general, in the result image, each pixel grayscale is determined by both the sine function with threshold and the parameter . In the experiment results, the NIEM method (we proposed) achieves better performance than the comparison algorithms. It gets the smallest MSE and the highest PSNR, SSIM. In image Lena test, MSE value:330.8151, PSNR value:22.9350, and SSIM value: 0.9451. In image Pout test, MSE value:132.0988, PSNR value:26.9218, and SSIM value: 0.9604.

KEYWORDS. Image enhancement, S-sharp function, Standard deviation, Threshold.



  • Daeyeong, Kim, Changick, and Kim. (2017) Contrast enhancement using combined 1-d and 2-d histogram-based techniques. IEEE Signal Processing Letters, 24(6), 804-808.
  • Magudeeswaran Veluchamy, Bharath Subramani. (2020) Fuzzy dissimilarity color histogram equalization for contrast enhancement and color correction. Applied Soft Computing, 89(1):106077.
  • Pal, S. K. and King, R. A. (1980) Image enhancement using fuzzy set, Electronics letters 16(10), 376-
  • Yang Ciyin, Huang Lianqing. (2002) X-ray image enhancement based on sinusoidal grayscale transformation. Optical Technology, 05,407-408.
  • Gong, C., Luo, C. and Yang, D. (2012) Improved image enhancement algorithm based on sine gray level transformation. Video Engineering 13, 60–63.
  • Lisani, J. L. . (2020) Local contrast enhancement based on adaptive logarithmic mappings. Image Processing On Line, 10, 43-61.
  • Zhang, Y. R. K. Y. and Feng, C. (2020). Image enhancement algorithm based on quadratic function and its implementation with fpga. Modern Electronics Technique 43(8), 72-76,81.
  • Thung, K.-H. and Raveendran, P. (2009) A survey of image quality measures. 2009 international conference for technical postgraduates (TECHPOS), IEEE, pp. 1-4.
  • Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. (2004) Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13(4), 600-612.
  • Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. (2011) The ssim index for image quality assessment, http://www.cns.nyu.edu/ lcv/ssim/ (https://ece.uwaterloo.ca/~z70wang/research/ssim/).
  • Otsu, N..(1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.

Download Full Paper Here (Right-Click and Save As)