Mohd Shafreen Mad Isa1 and Baba Musta2

1, 2 Faculty of Science and Natural Resources,
University Malaysia Sabah, Malaysia,
Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
Email: shafreen@live.com.my1, babamus@ums.edu.my2

ABSTRACT This paper highlights the geochemical compositions and mineralogy of the alteration zone of the andesitic host rock and volcanic breccia in Bukit Mantri area near Balung, Tawau, Sabah, where a gold mining project is now taking place. Minerals identified by XRD analysis include quartz, pyrite, K-feldspar, muscovite, chlorite, kaolinite, hematite, and goethite, while thin section analysis confirms the abundance of pyrite. XRF and ICP-OES analyses suggest a significant concentration of SO3, Cu, Pb, Zn and As, with average values of 2.68wt%, 254μg/g, 236.9μg/g, 232.9μg/g, and 30.6μg/g, respectively, in the hydrothermally altered andesite. The widespread presence of pyrite and higher concentration of SO3 provide insights for environmental control for its higher acidity generation potential. Meanwhile, secondary minerals such as iron and aluminium oxides and silicate minerals may provide acid buffers and reduce the dispersion of constituents.

KEYWORDS geochemistry, mineralogy, hydrothermal alterations, gold mineralisation, Bukit Mantri



  • Clark, C. M., & Downs, R. T. (2004). Using the American Mineralogist Crystal Structure Database in the Classroom. Journal of Geoscience Education, 52(1), 76–80. https://doi.org/10.5408/1089-9995-52.1.76
  • Downs, R. T., & Hall-Wallace, M. (2003). Using the American Mineralogist Crystal Structure Database. American Mineralogist, 88, 247–250. https://doi.org/10.5408/1089-9995-52.1.76
    Haruna, S. A. (2016). Geology and Mineral Exploration in the Bukit Mantri Gold Prospect, Wullersdorf Area, Tawau District.
  • Mackenzie, W. S., Adams, A. E., & Brodie, K. H. (2017). Rocks and Minerals in Thin Section. In Rocks and Minerals in Thin Section (2nd Editio). CRC Press. https://doi.org/10.1201/9781315116365
    Musta, B., Soehady, H. F. W., & Tahir, S. (2008). Geochemical characterization of volcanic soils from Tawau, Sabah. Bulletin of the Geological Society of Malaysia, 54, 33–36. https://doi.org/10.7186/bgsm2008006
  • Nordstrom, D. K. (2011). Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry, 26(11), 1777–1791. https://doi.org/10.1016/j.apgeochem.2011.06.002
  • Nordstrom, D. K., & Alpers, C. N. (1999). Geochemistry of acid mine waters. In G. S. Plumlee & M. J. Logsdon (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues: Society of Economic Geologist, Reviews in Economic Geology (Vol. 6).
  • Plumlee, G. S. (1999). The Environmental Geology of Mineral Deposits. In G. S. Plumlee & M. J. Logsdon (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues: Society of Economic Geologist, Reviews in Economic Geology (pp. 71–116).
  • Smith, K. S. (1999). Metal Sorption on Mineral Surfaces: An Overview with Examples Relating to Mineral Deposits. Review in Economic Geology, 6A-6B, 161–182. https://doi.org/
    Tahir, S., Musta, B., & Rahim, I. A. (2010). Geological heritage features of Tawau volcanic sequence, Sabah. Bulletin of the Geological Society of Malaysia, 56(56), 79–85. https://doi.org/10.7186/bgsm2010012
  • Winter, J. D. (2014). Principles of Igneous and Metamorphic Petrology (Pearson Ne). Pearson Education Limited.
  • Yan, A. S. W. (1991). Features of volcanic-hosted epithermal gold mineralization in the Nagos and Mantri areas, Sabah. Report No. SB 91/1.

Download Full Paper Here (Right-Click and Save As)


Ling Sin Yi1 , Junaidi Asis1 & Baba Musta1*

1Geology Program, Faculty of Science and Natural Resources,

Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

* Corresponding author. Email: babamus@ums.edu.my

ABSTRACT. A total of fifty-three (53) sediment samples were collected from Usukan coastal beach to study the potential of pollution due to heavy metals in the marine ecosystem. The sediment samples were collected along the coastal beach using a core sampler. The ICP-OES analysis was used to identify the concentration of heavy metals in the marine sediment samples. The results of pH analysis showed the increase of pH from 5.69 to 8.48 from inland into the sea. The lowest moisture content was 4.99%, whereas the highest was 48.75%. The organic matter ranges from 0.30 to 6.73%. The sediment texture varies from sandy, sandy loam, and sandy clay loam texture. The decreasing rank ing order of heavy metals concentration is Fe (4476-29829 ppm) followed by Al (5803-8524 ppm) and Mn (103-504 ppm), which are still within the background values and standard limits. The assessment of Fe, Al and Mn contamination in sediment samples was performed by comparing with the allowable range of average background values and the standard limits from Sediment Quality Guideline (SQG) in marine sediment. In conclusion, the results of quality assessment using the geoaccumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), and pollution load index (PLI) showed that the sediment from Usukan beach has a very low contamination level that causes only mild pollution.

KEYWORDS. Geochemistry, Heavy Metal, Sediment Quality, Marine Environment



  • Abolfazl, N. & Ahmad, I. 2012. Sediment quality assessment of Klang Estuary, Malaysia. Aquatic Ecosystem Health & Management: 15(3): 287-293.
  • Ahmed, A. & Askri, B. 2016. Seawater Intrusion Impacts on the Water Quality of the Groundwater on the Northwest Coast of Oman. Water Environment Research: 88: 732-740.
  • Allaway, W.H. 1957. pH, soil acidity and plant growth. Soil: 67-71.
  • Amir, M., Iqbal, M., Zainal, S. & Manap, A. 2020. Static Adsorption of Amphoteric Surfactant. Offshore Technology Conference.
  • Atherton, R.J., Baird, A.J. & Wiggs, G.F.S. 2001. Intertidal dynamics of surface moisture content on a meso-tidal beach. J. Coastal Res.: 17: 482–489.
  • Ball, J. 2001. Soil and Water Relationships. Noble Research Institute, 1 Sep 2001, Retrieved: https://www.noble.org/news/publications/ag-news-and-views/2001/september/soil-and-waterrelationSSships/.
  • Bauer, A., Radziejewska, T., Liang, K., Kowalski, N., … & Waniek, J.J. 2013. Regional differences of hydrographical and sedimentological properties in the Beibu Gulf, South China Sea. Journal of Coastal Research: 66 (10066): 49-71.
  • Birch, G. 2018. A review of chemical-based sediment quality assessment methodologies for the marine environment. Marine pollution bulletin: 133: 218-232.
  • Boyle, E.A. 1983. Manganese carbonate overgrowths on foraminifera tests. Geochimica et Cosmochimica Acta: 47(10). The Quality Assessment of Heavy Metals in Marine Sediments from Usukan Coastal Beach, Kota Belud, Sabah
  • BSI. 1990. BS1377: 1990 British Standard Methods of Tests for Soils for Civil Engineering Purposes. London: British Standard Institution (BSI).
  • Canfield, D. 1989. Reactive iron in marine sediments. Geochimica et cosmochimica acta.: 53: 619-32.
  • Chen, S., Takematsu, N., Ambe, S., Ament, A. & Ambe, F. 1994. A Mössbauer spectroscopy study on iron in marine sediments. Hyperfine Interactions: 91: 759-763.
  • Chuan, O.M. & Yunus, K. 2019. Sediment and organisms as marker for metal pollution. In Monitoring of Marine Pollution. IntechOpen: 1-19.
  • Clement, J.F. & Keij, J. 1958. Geology of the Kudat Peninsula, North Borneo (Compilation) GR783.
  • Unpublished Reports of the Royal Dutch Shell Group of Companies in British Borneo.
  • Csuros, M. & Csuros, C. 2002. Environmental Sampling and Analysis for Metals. Boca Raton, USA: Lewis Publishers.
  • Collenette, P. 1957. Notes on the geology of the headwaters of the Labuk, Sugut and Karamuak Rivers. Brit. Borneo Geol. Suv. Ann. Rep.:153-162.
  • Dezileau, L. & Pizarro, C. & Rubio, M. 2007. Sequential extraction of iron in marine sediments from the Chilean continental margin. Marine Geology – MAR GEOLOGY: 241: 111-116.
  • Ding, Z., Koriem, M.A., Ibrahim, S.M., Antar, A.S., Ewis, M.A., He, Z. & Kheir, A. M. 2020. Seawater intrusion impacts on groundwater and soil quality in the northern part of the Nile Delta, Egypt. Environmental Earth Sciences: 79(13): 1-11.
  • Djkstra, F. & Fitzhugh, R. 2003. Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the North Eastern United States. Geoderma: 114: 33-
  • Durães, N., Novo, L.A., Candeias, C. & Da Silva, E.F. 2018. Distribution, transport and fate of pollutants. In Soil pollution. Academic Press: 29-57.
  • Force, E.R. & Cox, L.J. 1991. Manganese contents of some sedimentary rocks of Paleozoic age in Virginia. US Government Printing Office.
  • Förstner, U. 2006. Contaminated sediments: lectures on environmental aspects of particle-associated chemicals in aquatic systems. Chicago: The University of Chicago Press Vol. 21.
  • Gopal, V., Achyuthan, H. & Jayaprakash, M. 2017. Assessment of trace elements in Yercaud Lake sediments, southern India. Environ Earth Sci.: 76: 63.
  • Govind, A.V., Behera, K., Dash, J.K., Balakrishnan, S., Bhutani, R., Managave, S. & Srinivasan, R. Trace element and isotope Geochemistry of Neoarchean carbonate rocks from the Dharwar craton, southern India: Implications for depositional environments and mantle influence on ocean chemistry. Precambrian Research: 357.
  • Grecco, L., Gómez, E., Botté, S., Marcos, Á., Marcovecchio, J. & Cuadrado, D. 2011. Natural and anthropogenic heavy metals in estuarine cohesive sediments: Geochemistry and bioavailability. Ocean Dynamics – OCEAN DYN: 61: 285-293.
  • Gui, Y., Zhang, Q., Qin, X. & Wang, J. 2021. Influence of Organic Matter Content on Engineering Properties of Clays. Advances in Civil Engineering 2021: 1-11.
  • Gwak, Y.S. & Kim, S.H. 2016. Factors Affecting Soil Moisture Spatial Variability for a Humid Forest Hillslope. Hydrological Processes.
  • Hakanson, L. 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water. Res.: 14: 975–1001.
  • Hall, R. & Breitfeld, H.T. 2017. Nature and Demise of the Proto-South China Sea. Bulletin of the Geological Society of Malaysia: 63.
  • Han, F.X., Kingery, W.L. & Selim, H.M. 2001. Accumulation, redistribution, transport, and bioavailability of heavy metals in waste-amended soils. CRC Press: In Trace Elements in Soil: 161-190.
  • Hart, B.T. 1982. Uptake of trace metals by sediments and suspended particulates: A review. Hydrobiol.: 91: 299–313.
  • Jayamurali, D., Varier, K., Liu, W., Jegadeesh, P.H., Yaacov, B.D., Shen, X. & Gajendran, B. 2021. An Overview of Heavy Metal Toxicity. ReseachGate.
  • Junaidi, A. & Basir, J. 2012. Aptian to Turonian radiolaria from the Darvel Bay Ophiolite Complex, Kunak, Sabah. Bulletin of Geol. Soc. Malaysia: 58: 89-96.
  • Le Pera, E., Arribas, J., Critelli, S. & Tortosa, A. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): implications for provenance studies. Sedimentology: 48(2): 357-378.
  • Li, N., Feng, D., Wan, S., Peckmann, J., Guan, H., Wang, X., … & Chen, D. 2021. Impact of methane seepage dynamics on the abundance of benthic foraminifera in gas hydrate bearing sediments: New insights from the South China Sea. Ore Geology Reviews: 104247.
  • Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X. & Han, W. 2019. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal: 28(4): 380-394.
  • Lindsay, W.L. 1979. Chemical equilibria in soils. New York: John Wiley & Sons.
  • Luo, J.Z., Sheng, B.X. & Sheng, Q.Q. 2020. A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion. Journal of Fuel Chemistry and Technology: 48 (11).
  • Maher, W., Batkey, G.E. & Lawrence, I. 1999. Assessing the health of sediment ecosystems: Use of chemical measurements. Freshwater Biol.: 41: 361–372.
  • McCauley, A., Jones, C. & Olson-Rutz, K. 2017. Soil pH and Organic Matter. Nutrient Management: 8: 1-4.
  • Moore, C. & Bostrom, K. 1978. The elemental compositions of lower marine organisms. Chemical Geology – CHEM GEOL: 23: 1-9.
  • Muli, M. M. 2017. Metals in Plants and Soils Along a Section of Nairobi. School of Pure and Applied Science, Kenyatta University.
  • Müller, G. 1969. Index of geoaccumulation in the sediments of the Rhine River. Geojournal: 2:108–
  • Myung, C. J. 2008. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine. US National Library of Medicine: 8(4): 2413-2423.
  • Namikas, S.L., Edwards, B.L., Bitton, M.C.A., Booth, J.L. & Zhu, Y. 2010. Temporal and spatial variability in the surface moisture content of a fine-grained beach. Geomorphology: 114: 303–
  • Narejo, A.A., Shar, A.M., Fatima, N. & Sohail, K. 2019. Geochemistry and origin of Mn deposits in the Bela ophiolite complex, Balochistan, Pakistan. Journal of Petroleum Exploration and Production Technology: 9(4): 2543-2554.
  • Neff, J. M. 2002. Bioaccumulation in Marine Organisms. Massachusetts. Elsevier Publisher: 175-189.
  • Nicholson, K., Hein, J.R., Biilm, B. & Dasgupta, S. 1997. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society of London Special Publication: 119: 370.
  • NOAA, U. 1999. Screening Quick Reference Tables (SQuiRTs). Coastal protection and restoration division. National Marine Fisheries Service (NMFS). US Dep. Commer. National Oceanic and Atmospheric Adminstration (NOAA) Tech. Memo.: Our Living Oceans. Report on the status of US living marine resources, 1999.
  • Prasad, R. and J.F. Power. 1997. Soil Fertility Management for Sustainable Agriculture. New York: Lewis Publishers.
  • Sanudin, T. & Baba, M. 2007. Pengenalan kepada Stratigrafi. Kota Kinabalu: Penerbit Universiti Malaysia Sabah.
  • Seaward, M.R.D. & Richardson, D.H.S. 1989. Atmospheric sources of metal pollution and effects on vegetation. Heavy metal tolerance in plants: Evolutionary aspects: 75-92.
  • Schmutz, P. & Namikas, S. 2018. Measurement and modeling of the spatiotemporal dynamics of beach surface moisture content. Aeolian Research: 34: 35–48.
  • Sparks, D.L. 2003. Environmental soil chemistry. London: Elsevier, Academic Press.
  • Sugisaki, R., Sugitani, K. & Adachi, M. 1991. Manganese carbonate bands as an indicator of hemipelagic sedimentary environments. The Journal of Geology: 99(1): 23-40.
  • Taylor, K.G. & Macquaker, J.H. 2011. Iron minerals in marine sediments record chemical environments. Elements: 7(2): 113-118.
  • Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. & Sutton DJ. 2012. Heavy metal toxicity and the environment. Exp Suppl.: 101:133-64.
  • Tomlinson, D.L., Wilson, J.G., Harris, C.R. & Jeffrey, D.W. 1980. Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen: 33(1-4), 566-575.
  • Tongkul, F. 2006. The structural style of Lower Miocene Sedimentary Rocks, Kudat Peninsula, Sabah. Bulletin of the Geol. Soc. of Malaysia: 49: 119-124.
  • Tsai, H.H. & Schmidt, W. 2020. pH-dependent transcriptional profile changes in iron deficient Arabidopsis roots. BMC Genomics: 21: 694.
  • Turekian, K.K. & Wedepohl, K.H. 1961. Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull.: 72(2): 175-92.
  • United States Department of Agriculture, Soil Conservation Service (USDA). 1975. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Soil Surv. Staff. U.S. Dep. Agric. Handbook: 436.
  • U.S. Environmental Protection Agency. 2014. Method 6010D (Revision 4): Inductively coupled-plasma atomic emission spectrometry. Washington, DC: Environmental Protection Agency.
  • Vallius, H., Ryabchuk, D. & Kotilainen, A. 2007. Distribution of heavy metals and arsenic in soft surface sediments of the coastal area off Kotka, northeastern Gulf of Finland, Baltic Sea. Geological Survey of Finland Special Paper: 45: 33–48.
  • Xiang, M., Li, Y., Yang, J., Lei, K., Li, Y., Li, F., Zheng, D., Fang, X. & Cao, Y. 2021. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution: 278.
  • Yang, W., Cao, Z., Zhang, H. & Lang, Y. 2021. A national wide evaluation of heavy metals pollution in surface sediments from different marginal seas along China Mainland, Regional Studies in Marine Science: 42.
  • White, W.M. 2020. Geochemistry: The Oceans as a Chemical System. Oxford: John Wiley & Sons.
  • Wuana, R. & Okieimen, F. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ResearchGate: ISRN Ecology
  • Zhang, X., Zhong, T., Liu, L. & Ouyang, X. 2015. Impact of Soil Heavy Metal Pollution on Food Safety in China. PLoS ONE: 10(8).
  • Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W. & Marhaba, T. 2018. pH effect on heavy metal release from a polluted sediment. Journal of Chemistry.

Download Full Paper Here (Right-Click and Save As)