Volume 38, Issue 2

CONTENT
ORIGINAL ARTICLES

A Short Review of Isoindigo Acceptor for Conjugated Polymeric Photovoltaics
Shu Er Tan, Wahidah Zabidi and Mohd Sani Sarjadi*

Characterization of Different Metal Oxide Promoted Alumina Catalyst
- S. M . Anisuzzaman, Awang Bono, Duduku Krishnaiah, F .A . Lahin, and C. Ramlan

Complex Intuitionistic Fuzzy Subrings
Mikhled, Okleh Alsarahead, Abd Ghafur, and Ahmad

On the General Solution of 2th Order Linear Differential Equation
J. López-Bonilla,G. Posadas-Durán, and O. Salas-Torres.

On the Roots of the Legendre Laguerre, and Hermite Polynomials
S. Álvarez-Ballesteros, J. López-Bonilla, R. López-Vázquez

Relationship between Water Quality & Black Flies (Diptera: Simuliidae) Abundance in Tambunan District, Sabah.
Nur Ashiqin Abdul Hamid, Maria Lourdes T. Lardizabal, Hiroyuki Takaoka, Estherpeni Stephen and Maznah Mahali

Download Full Volume Here (Right-Click and Save As..)

A SHORT REVIEW OF ISOINDIGO ACCEPTOR FOR CONJUGATED POLYMERIC PHOTOVOLTAICS

Shu Er Tan, Wahidah Zabidi and Mohd Sani Sarjadi*
Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
*Corresponding author: msani@ums.edu.my

ABSTRACT. This paper focussed on the recent development of conjugated polymers that contains isoindigo as acceptor moiety in the application of copolymeric solar cell. In the past decade, various modifications have been done either on the isoindigo acceptor itself or incorporated the isoindigo with different donor moieties. Recently, the power conversion efficiency (PCE) of this isoindigo-based polymeric photovoltaics have achieved up to ~7%. Hence, it is a promising acceptor for the photovoltaics and is expected to break through the recent PCE achievement in the future. This review briefly summarized the structures and properties of the isoindigo-based polymers that have been investigated by the past researches.

KEYWORD. Isoindigo; Conjugated copolymers; Polymeric solar cells; Small molecules.

 

REFERENCES:

  • Ashraf, R. S., Kronemeijer, A. J., James, D. I., Sirringhaus, H., & McCulloch, I. (2012). A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chemical Communications, 48(33), 3939. https://doi.org/10.1039/c2cc30169e
  • Braga, A. F. B., Moreira, S. P., Zampieri, P. R., Bacchin, J. M. G., & Mei, P. R. (2008). New processes for the production of solar-grade polycrystalline silicon: A review. Solar Energy Materials and Solar Cells, 92(4), 418–424. https://doi.org/10.1016/j.solmat.2007.10.003
  • Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P.L., & Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature. https://doi.org/10.1038/347539a0
  • Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p-n junction photocell for converting solar radiation into electrical power [3]. Journal of Applied Physics25(5), 676–677. https://doi.org/10.1063/1.1721711
  • Cheng, X., Wan, Q., Wu, Y., Guo, B., Guo, X., Li, Y., Zhang, M., Cui, C., & Li, Y. (2016). Toward high open-circuit voltage by smart chain engineering in 2D-conjugated polymer for polymer solar cells. Solar Energy Materials and Solar Cells. https://doi.org/10.1016/j.solmat.2016.01.017
  • Cheng, Y., Yang, S., & Hsu, C. (2009). Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews, 109(11), 5868–5923. https://doi.org/10.1021/cr900182s
  • D ’aprano, G., Leclerc, M., & Zotti, G. (1992). Stabilization and Characterization of Pernigraniline Salt: The ” Acid-Doped ” Form of Fully Oxidized Polyanilines. Macromolecules. https://doi.org/10.1021/ma00034a013
  • Darling, S. B., & You, F. (2013). The case for organic photovoltaics. RSC Adv., 3, 17633– 17648. https://doi.org/10.1039/c3ra42989j
  • de Miguel, G., Camacho, L., & García-Frutos, E. M. (2016). 7,7′-Diazaisoindigo: a novel building block for organic electronics. J. Mater. Chem. C, 4(6), 1208–1214. https://doi.org/10.1039/C5TC03464G
  • Dutta, G. K., Han, A. R., Lee, J., Kim, Y., Oh, J. H., & Yang, C. (2013). Visible-near infrared absorbing polymers containing thienoisoindigo and electron-rich units for organic transistors with tunable polarity. Advanced Functional Materials, 23(42), 5317–5325. https://doi.org/10.1002/adfm.201300536
  • Estrada, L. A., Stalder, R., Abboud, K. A., Risko, C., Bredas, J. L., & Reynolds, J. R. (2013). Understanding the electronic structure of isoindigo in conjugated systems: A combined theoretical and experimental approach. Macromolecules46(22), 8832–8844. https://doi.org/10.1021/ma4013829
  • Goetzberger, A., & Hebling, C. (2000). Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 62(1), 1–19. https://doi.org/10.1016/S0927- 0248(99)00131-2
  • Grenier, F., Berrouard, P., Pouliot, J.-R., Tseng, H.-R., Heeger, A. J., & Leclerc, M. (2012). Synthesis of new n-type isoindigo copolymers. Polymer Chemistry, 4(6), 1836–1841. https://doi.org/10.1039/C2PY20986A
  • Günes, S., Neugebauer, H., & Sariciftci, N. S. (2007). Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews, 107(4), 1324–1338. https://doi.org/10.1021/cr050149z
  • Herzog, A. V., Lipman, T. E., & Kammen, D. M. (2001). Renewable energy sources. Encyclopedia of Life . Retrieved from http://rael.berkeley.edu/old_drupal/sites/default/files/old-site-files/2001/HerzogLipman-Kammen-RenewableEnergy-2001.pdf
  • Hideki, S., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of Electrically-Conducting organic Polymers: Halogen Derivatives of Polyacatylene, (CH)x. J.C.S., Chemical Communications, (16), 1–5. https://doi.org/10.1039/c39770000578
  • Leclerc, M. (1999). Optical and electrochemical transducers based on functionalized conjugated polymers. Advanced Materials, 11(18), 1491–1498. https://doi.org/10.1002/(SICI)1521 -4095(199912)11:18<1491::AIDADMA1491>3.0.CO;2-O
  • Leclerc, M., & Faid, K. (1997). Electrical and optical properties of Processable Polythiophene Derivatives: Structure-Property relationships. Advanced Materials9(14), 1087–1094. https://doi.org/10.1002/adma.19970091404
  • Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Ade. H., & Yan, H. (2014). Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 5:5293(9), doi: 10.1038/ncomms6293. https://doi.org/10.1038/ncomms6293
  • Mei, J., Graham, K. R., Stalder, R., & Reynolds, J. R. (2010). Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells. Organic Letters, 12(4), 660–663. https://doi.org/10.1021/ol902512x
  • Morin, J.-F., Leclerc, M., Adès, D., & Siove, A. (2005). Polycarbazoles: 25 Years of Progress. Macromolecular Rapid Communications, 26(10), 761 –778. https://doi.org/10.1002/marc.200500096
  • Neher, D. (2001). Polyfluorene homopolymers: Conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromolecular Rapid Communications. https://doi.org/10.1002/1521 -3927(20011101)22:17<1365::AIDMARC1365>3.0.CO;2-B
  • Rand, B. P., Genoe, J., Heremans, P., & Poortmans, J. (2007). Solar Cells Utilizing Small Molecular Weight Organic Semiconductors. Prog. Photovolt: Res. Appl., 15(February 2013), 659–676. https://doi.org/10.1002/pip
  • Rehahn, M., Schlüter, A. D., Wegner, G., & Feast, W. J. (1989). Soluble poly(paraphenylene)s. 2. Improved synthesis of poly(para-2,5-di-n-hexylphenylene) via Pdcatalysed coupling of 4-bromo-2,5-di-n-hexylbenzeneboronic acid. Polymer. https://doi.org/10.1016/0032-3861(89)90079-7
  • Sathiyan, G., Sivakumar, E. K. T., Ganesamoorthy, R., Thangamuthu, R., & Sakthivel, P. (2016). Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Letters, 57(3), 243–252. https://doi.org/10.1016/j.tetlet.2015.12.057
  • Scharber, M. C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J., & Brabec, C. J. (2006). Design rules for donors in bulk-heterojunction solar cells Towards 10 % energy-conversion efficiency. Advanced Materials, 18(6), 789–794. https://doi.org/10.1002/adma.200501717
  • Sonar, P., Tan, H.-S., Sun, S., Lam, Y. M., & Dodabalapur, A. (2013). Isoindigo dye incorporated copolymers with naphthalene and anthracene: promising materials for stable organic field effect transistors. Polymer Chemistry, 4(6), 1983. https://doi.org/10.1039/c2py20942j
  • Stalder, R., Mei, J., Graham, K. R., Estrada, L. a, & Reynolds, J. R. (2013). Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics. Chemistry of Materials, 26(1), 664–678. https://doi.org/10.1021/cm402219v
  • Stalder, R., Mei, J., & Reynolds, J. R. (2010). Isoindigo-based donor-acceptor conjugated polymers. Macromolecules, 43(20), 8348–8352. https://doi.org/10.1021/ma1018445
  • Stalder, R., Mei, J., Subbiah, J., Grand, C., Estrada, L. A., So, F., & Reynolds, J. R. (2011). n-Type Conjugated Polyisoindigos. Macromolecules, 44(16), 6303–6310. https://doi.org/10.1021/ma2012706 Tang, W. C. (1986). Two-layer Organic Photovoltaic Cell, 48(2), 183–185.
  • Wang, E., Ma, Z., Zhang, Z., Henriksson, P., Inganäs, O., Zhang, F., & Andersson, M. R. (2011a). An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. Chemical Communications, 47(17), 4908. https://doi.org/10.1039/c1cc11053e
  • Wang, E., Ma, Z., Zhang, Z., Vandewal, K., Henriksson, P., Inganäs, O., Zhang, F. & Andersson, M. R. (2011 b). An Easily Accessible Isoindigo-Based Polymer for HighPerformance Polymer Solar Cells. Journal of the American Chemical Society, 133(36), 14244–7. https://doi.org/10.1021/ja206610u
  • Wang, E., Mammo, W., & Andersson, M. R. (2014). 25th anniversary article: Isoindigobased polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Advanced Materials, 26(12), 1801 –1826. https://doi.org/10.1002/adma.201304945
  • Watanabe, A., Murakami, S., Mori, K., & Kashiwaba, Y. (1989). Electronic properties of polypyrrole/n-Si heterojunctions and polypyrrole/metal contacts. Macromolecules22(11), 4231–4235. https://doi.org/10.1021/ma00201a016
  • Wohrle, B. D., & Meissner, D. (1991). Organic Solar Cells, 3, 129–138.
  • Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer Photovoltaic Cells – Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science, 270(5243), 1789–1791. https://doi.org/10.1126/science.270.5243.1789
  • Zhang, G., Fu, Y., Xie, Z., & Zhang, Q. (2011). Synthesis and Photovoltaic Properties of New Low Bandgap Isoindigo-Based Conjugated Polymers. Macromolecules, 44(6), 1414–1420. https://doi.org/10.1021/ma102357b
  • Zhang, S., Ye, L., Zhao, W., Yang, B., Wang, Q., & Hou, J. (2015). Realizing over 10% efficiency in polymer solar cell by device optimization. Science China Chemistry58(2), 248–256. https://doi.org/10.1007/s11426-014-5273-x
  • Zhou, H., Yang, L., & You, W. (2012). Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules, 45(2), 607–632. https://doi.org/10.1021/ma201648t

Download Full Paper Here (Right-Click and Save As..)

Characterization of Different Metal Oxide Promoted Alumina Catalyst

S.M. Anisuzzamana,b,*, Awang Bonob, Duduku Krishnaiahb, F. A. LahinbC. Ramlanb
aEnergy Research Unit (ERU),
bChemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, MALAYSIA.
*Correspondence author. Tel: +6088-320000 ext. 3222, Fax: +6088-320348, E-mail address: anis_zaman@ums.edu.my; dr.anis.ums@gmail.com

ABSTRACT. In this study, different metal oxide alumina promoted catalysts were prepared and characterized. All the catalysts (CaO/Al2O3, CuO/Al2O3, FeO/Al2O3MnO/Al2O3, NiO/Al2O3 and ZnO/Al2O3) were prepared using the incipient wetness impregnation method followed by drying and calcination. The characterization of all six samples of catalysts was done to determine the surface morphology, porosity, functional group, thermal stability, metal content and particle size distribution. Scanning electron microscope (SEM) analysis of samples showed that there were pores on the surface of the alumina. Mercury intrusion porosimetry (MIP) showed that copper oxide alumina promoted (CuO/Al2O3) had the high porosity which is 36.77 m2/g followed by zinc oxide (ZnO/Al2O3), calcium oxide (CaO/Al2O3) nickel oxide (NiO/Al2O3) manganese oxide (MnO/Al2O3) and ferric oxide alumina promoted (FeO/Al2O3) catalysts. Fourier transform infrared spectroscopy (FTIR) analysis showed the presence of by-product existed in all catalysts. Atomic absorption spectroscopy (AAS) analysis showed the presence of Cu, Fe and Zn in the CuO/Al2O3, FeO/Al2O3 and ZnO/Al2O3, while Ca was absent in CaO/Al2O3Besides, through thermo-gravimetric analyzer (TGA) and differential thermal analysis (DTA), all the catalysts showed a slight decrease in weight which can be considered as a stable catalyst. The particle size distribution analysis using the Zetasizer showed the particle size mean based on the intensity of CaO/Al2O3, CuO/Al2O3, FeO/Al2O3MnO/Al2O3, NiO/Al2O3 and ZnO/Al2O3 were 2305 nm, 5560 nm, 5560 nm, 1281 nm, 1281 nm and 3580 nm, respectively.

KEYWORDS. Biofuel, metal oxide promoted alumina catalyst, wet incipient impregnation method

 

REFERENCES:

  • Aliyu, A. S., Ramli, A. T.,Saleh, M. A. 2014. Environmental impact assessment of a new nuclear power plant (NPP) based on atmospheric dispersion modeling. Stochastic Environmental Research and Risk Assessment 28 (7): 1897-1911.
  • Bakar, W. A.W. A., Othman, M.Y., Ali, R. Yong, C.K., Toemen, S. 2009. The investigation of active sites on nickel oxide based catalysts towards the in-situ reactions of methanation and desulfurization. Modern Applied Science 3(2): 35-43.
  • Bridgwater, A.V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38: 68-94.
  • Buitrago-Sierra, R., Ruiz-Martínez, J., Serrano-Ruiz, J.C., Rodríguez-Reinoso, F., A. Sepúlveda-Escribano A. 2012. Ethanol Steam Reforming on Ni/Al2O3 Catalysts: Effect of the Addition of Zn and Pt. Journal ofColloid and Interface Science 383(1): 148-154.
  • Dorado, M.P. Ballesteros, E. Arnal,. J. M. Gómez, J. López, F.J. 2003. Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel 82(11): 311- 1315.
  • Gan, P. Y., Li, Z. D. 2008. An econometric study on long-term energy outlook and the implications of renewable energy utilization in Malaysia. Energy Policy 36(2):890- 899.
  • Haber, J., Block, J. H., Delmon, B. 1995. Manual of methods and procedures for catalyst characterization. Pure and Applied Chemistry 67: 1257-1306.
  • Hagen, J. 2006. Industrial catalysis: A practical approach. Wiley-VCH Verlag GmbH & Co. , 1-14.
  • Hashim H, Ho, W. S. 2011. Renewable energy policies and initiatives for a sustainable energy future in Malaysia. Renewable and Sustainable Energy Reviews 15(9):4780- 4787.
  • Huang, H., Young, N., Williams, B.P. , Taylor, S.H., Hutchings, G. 2005. COS hydrolysis using zinc-promoted alumina catalysts. Catalysis Letters 104(1): 17-21.Kiss, E., Ratkovic, S., Vujicic, D., Boskovic, G. 2012. Accelerated polymorphous transformations of alumina induced by copper ions impede spinal formation. Indian Journal of Chemistry 51(A): 1669-1676.
  • Li, G. 2005. FT-IR studies of zeolite materials: characterization and environmental applications. The University of Iowa’s Institutional Repository, Ph.D thesis.
  • McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37-46
  • Nascimento, J. C., Sousa, J. F., Rojas, L.O. A., Fontes, F.A.O. 2011. Synthesis and characterization of CuCl2 /SiO2 catalyst for the oxychlorination of methane. Brazilian Journal of Petroleum and Gas 5(2): 55-63.
  • Ookawa. M. 2012. Synthesis and characterization of Fe-Imogolite as an oxidation catalyst. InTech, 239-258.
  • Pua, F., Fang, Z. Zakaria, S. Z., Guo, F. Chin-Hua, C. 2011. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnology for Biofuels 4: 56.
  • Rosal, R., Gonzalo, M.S., Rodríguez, A., García-Calvo E. 2010. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide. Journal of Hazardous Materials 183(1-3), 271–278.
  • Zabeti , M., Daud , W.M.A.W., Aroua M.K. 2010. Biodiesel production using aluminasupported calcium oxide: an optimization study. Fuel Processing Technology 91(2) 243–248.
  • Zabeti , M., Daud , W.M.A.W., Aroua M.K. 2009. Optimization of the activity of cao/al2o3 catalyst for biodiesel production using response surface methodology. Applied Catalysis A: General 366 (1) 154-159.

 

Download Full Paper Here (Right-Click and Save As..)

Complex Intuitionistic Fuzzy Subrings

Mikhled1* Okleh Alsarahead, Abd Ghafur1 Ahmad
1School of Mathematical Science, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, Malaysia.
*Corresponding author’s email: mekhledsarheed@yahoo.com

ABSTRACT. In this paper, we defined the complex intuitionistic fuzzy subring and introduced some new concepts like Intuitionistic fuzzy sets and homogeneous complex intuitionistic fuzzy sets. Then, we investigated some of characteristics of complex intuitionistic fuzzy subring. The relationship between complex intuitionistic fuzzy subring and intuitionistic fuzzy subring is also investigated. It is found that every complex intuitionistic fuzzy subring yields two intuitionistic fuzzy subring. Finaly, we defined the image and inverse image of complex intuitionistic fuzzy subring under ring homomorphism, and thus studied their elementary properties.

KEYWORDS. Intuitionistic fuzzy set, intuitionistic fuzzy subring, homogeneous complex intuitionistic fuzzy set, complex intuitionistic fuzzy subring.

 

REFERENCES:

  • Alkouri, A. & Salleh A. 2012. Complex intuitionistic fuzzy sets, in Proceedings of the International Conference on Fundamental and Applied Sciences (ICFAS ’12), vol. 1482 of AIP Confere Proceedings, (2012) 464-470.
  • Alsarahead, M. & Ahmad, A. 2017a. Complex Fuzzy Subgroups, Applied Mathematical Sciences, 11 (41):2011-2021.
  • Alsarahead, M. & Ahmad, A. 2017b. Complex Fuzzy Subrings, International Journal of Pure and Applied Mathematics, accepted for publication.
  • Alsarahead, M. & Ahmad, A. 2017c. Complex Intuitionistic Fuzzy Subgroups, submitted to Italian Journal of Pure and Applied Mathematics. Atanassov, K.T. 1986. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1): 87-96.
  • Hur, K. Kang, H.W. & Song, H.K. 2003. Intuitionistic fuzzy subgroups and subrings, Honam Mathematical Journal, 25 (2): 19-41.
  • Ramot, D. Milo, R. Friedman, M. & Kandel, A. 2002. Complex fuzzy sets, IEEE Transaction on Fuzzy Systems, 10 (2):171-186.
  • Banerjee, B. & Basnet, D.K. 2003. Intuitionistic fuzzy subrings and ideals, The Journal of Fuzzy Mathematics, 11 :139-155.
  • Zadeh, L.A. 1965. Fuzzy sets, Information and Control, 8 :338-353.

Download Full Paper Here (Right-Click and Save As..)

On the General Solution of 2th Order Linear Differential Equation

J. López-Bonilla, G. Posadas-Durán, O. Salas-Torres
ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México.
Email: lopezb@ipn.mx

ABSTRACT. We employ a method of factorization to obtain the general solution of the second order linear differential equation, which is an alternative procedure to the usual Variation of Parameters method of Lagrange. We consider that our approach can be adapted to linear differential equations of the third and fourth order.

KEYWORDS. Linear differential equation of second order, Variation of parameters, Factorization method.

REFERENCES:

  • A. Hernández-Galeana, J. López-Bonilla, R. López-Vázquez, On the second order linear differential equation, Pure and Appl. Maths. Lett. 2 (2014) 31-34.
  • G. Bahadur Thapa, A. Domínguez-Pacheco, J. López-Bonilla, On the linear differential equation of second order, Prespacetime Journal 6, No. 10 (2015) 999-1001.
  • G. Krishna Srinivasan, A note on Lagrange’s method of variation of parameters, Missouri J. Math. Sci.19 (2007) 11-14.
    J. H. Caltenco, J. López-Bonilla, J. Morales, G. Ovando, On an iterative method to solve 2th order homogeneous linear differential equations, Inform. Sci. Comput. No. 1 (2014) 1-8.
  • A. Hernández-Galeana, J. López-Bonilla, R. López-Vázquez, On the second order linear differential equation, Pure and Appl. Maths. Lett. 2 (2014) 31-34.
  • J. López-Bonilla, A. Zaldívar-Sandoval, J. Yaljá Montiel, 2th order linear differential operator in its exact form, J. Vect. Rel. 5, No. 1 (2010) 139-141.
  • J. López-Bonilla, S. Vidal-Beltrán, S. Yáñez-San Agustín, Homogeneous linear differential equation ofsecond order, Prespacetime Journal 7, No. 13 (2016) 1786-1788. J. López-Bonilla, G. Posadas-Durán, O. Salas-Torres, Variational principle for, Prespacetime Journal 8, No. 2 (2017) 226-228.
  • J. López-Bonilla, B. Man Tuladhar, B. Moreno-Ley, On the 3rd. order linear differential equation, Kathmandu Univ. J. Sci. Eng. & Techn. 8, No. 2 (2012) 7-10.
  • T. Quinn, S. Rai, Variation of parameters in differential equations, PRIMUS 23, No. 1 (2012) 25-44.
  • V. Barrera F., J. López-Bonilla, R. López-Vázquez, On the particular solution of Prespacetime Journal 7, No. 12 (2016) 1677-1679.
  • Z. Ahsan, Differential equations and their applications, Prentice-Hall, New Delhi (2004).
  • Z. Ahsan, R. Cruz-Santiago, J. López-Bonilla, Linear differential equations of third and fourth order, Aligarh Bull. Maths. 31, No. 1 (2012) 5-7

 

Download Full Paper Here (Right-Click and Save As..)

On the Roots of the Legendre Laguerre, and Hermite Polynomials

 S. Álvarez-Ballesteros, J. López-Bonilla, R. López-Vázquez,
ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
*jlopezb@ipn.mx

ABSTRACT. For several orthogonal polynomials, Cohen proved that their roots are the eigenvalues of symmetric tridiagonal matrices. In this paper, we give examples of this Cohen’s result for the Legendre, Laguerre, and Hermite polynomials, which are useful in applications to quantum mechanics and numerical analysis.

KEYWORDS: Laguerre and Hermite polynomials, Leverrier-Takeno’s technique, Legendre polynomials.

 

REFERENCES:

  • A. Bucur, B. E. Carvajal-Gámez, J. López-Bonilla, Laguerre polynomials: Their Laplace transform via equidistant interpolation, J. Sci. Res. 53 (2009) 257-258.
  • A. M. Cohen, An algebraic approach to certain differential eigenvalue problems, Linear Algebra and its Appls. 240 (1996) 183-198.
  • A. M. Cohen, Numerical methods for Laplace inversion, Springer, New York (2007). C. Lanczos, Applied analysis, Dover, New York (1988). D. S. Watkins, The QR algorithm revisited, SIAM Rev. 50 (2008) 133-145.
  • E. R. Smith, Zeroes of the hermitean polynomials, Am. Math. Monthly 43 (1936) 354-358. F. Pidduck, Laguerre polynomials in quantum mechanics, J. London Math. Soc. (1) 4 (1929) 163-166.
  • G. Golub, F. Uhlig, The QR algorithm: 50 years later its genesis by John Francis and Vera Kublanovskaya and subsequent developments, IMA J. Numer. Anal. 29, No. 3 (2009) 467-485.
  • H. E. Salzer, R. Zucker, R. Capuano, Table of the zeros and weight factors of the first twenty Hermite polynomials, J. Res. Nat. Bureau Stand. 48, No. 2 (1952) 111-116.
  • http://mathworld.wolfram.com/Laguerre-GaussQuadrature.html
  • https://math.stackexchange.com/questions/104845/the-roots-of-hermite-polynomials-are-allreal
  • I. Guerrero-Moreno, J. López-Bonilla, J. Rivera-Rebolledo, Leverrier-Takeno coefficients for the characteristic polynomial of a matrix, J. Inst. Eng. 8, No. 1-2 (2011) 255-258.
  • J. H. Caltenco, J. López-Bonilla, J. Rivera-Rebolledo, Gaussian quadrature via Hermite and Lagrange interpolations, J. Sci. Res. 55 (2011) 177-180.
  • J. G. F. Francis, The QR transformation: A unitary analogue to the LR transformation, The Computer Journal 4, No. 3 (1961) 265-271 and 332-345.
  • J. H. Caltenco, J. López-Bonilla, R. Peña-Rivero, Morse’s radial wave function, Lithuanian J. of Phys. 50, No. 4 (2010) 403-404.
  • J. López-Bonilla, A. Lucas-Bravo, S. Vidal-Beltrán, Integral relationship between Hermite and Laguerre polynomials: Its application in quantum mechanics, Proc. Pakistan Acad. Sci. 42, No. 1 (2005) 63-65.
  • J. López-Bonilla, B. Man Tuladhar, R. Peña-Rivero, Relationship between wave functions of two-dimensional hydrogen atom in parabolic and polar coordinates, J. Sci. Res. 54 (2010) 219-22.
  • J. López-Bonilla, R. López-Vázquez, H. Torres-Silva, On the Legendre polynomials, Prespacetime Journal 6, No. 8 (2015) 735-739.
  • J. López-Bonilla, G. Posadas-Durán, On the Saha’s generating function for the Hermite polynomials, Prespacetime Journal 7, No. 13 (2016) 1805-1806.
  • J. López-Bonilla, R. López-Vázquez, V. M. Salazar del Moral, On some identities for the Laguerre polynomials, Prespacetime Journal 8, No. 10 (2017) to appear.
  • J. Mawhin, A. Ronveaux, Schrödinger and Dirac equations for the hydrogen atom, and Laguerre polynomials, Arch. Hist. Exact Sci. 64 (2010) 429-460.
  • R. Cruz-Santiago, J. López-Bonilla, S. Yáñez-San Agustín, A note on the Laguerre polynomials, Prespacetime Journal 8, No. 4 (2017) 511-512.
  • R. E. Greenwood, J. J. Miller, Zeros of the Hermite polynomials and weights for Gauss mechanical quadrature formula, Bull. Am. Math. Soc. 54, No. 8 (1948) 765-769.
  • V. Barrera-Figueroa, J. López-Bonilla, J. Sosa, Multiple root finder algorithm for Legendre and Chebyshev polynomials via Newton’s method, Annales Mathematicae et Informaticae 33 (2006) 3-13.
  • V. Barrera-Figueroa, J. López-Bonilla, J. Sosa, Method of moments and non-uniform sampling via Legendre polynomials roots, Bol. Soc. Cub. Mat. Comp. 7, No. 1 (2009) 19-33.
  • V. N. Kublanovskaya, Certain algorithms for the solution of the complete eigenvalue problem, Soviet Math. Dokl. 2 (1961) 17-19.Download Full Paper Here (Right-Click and Save As..)

Relationship between Water Quality & Black Flies (Diptera: Simuliidae) Abundance in Tambunan District, Sabah

Nur Ashiqin Abdul Hamid1*, Maria Lourdes T. Lardizabal1, Hiroyuki Takaoka2Estherpeni Stephen1 & Maznah Mahali
1Faculty of Science and Natural Resources, University Malaysia Sabah, Jln. UMS, 88400 Kota Kinabalu, Sabah, Malaysia
2Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
Corresponding author: Nur Ashiqin Abudul Hamid Email: ashiqinhamid@gmail.com

ABSTRACT. A study to investigate the relationship between black flies (Simuliidae) pupa abundance and physio-chemical parameters such as velocity, water temperature, pH, dissolved oxygen, conductivity and total dissolved solid was conducted at Tambunan district, Sabah. A total of six rivers were selected as sampling stations. Five sampling points located at a distance of 5-10 meters were established in each sampling station. Sampling was conducted every fortnight for a duration of six months from October 2015 until March 2017. Samples of black flies larvae and pupae were manually collected from substrates consisting of grasses, plant roots and plastics which were found stuck in between the rocks with running water area. Water quality parameters that were measured during every sampling, include water temperature, velocity, pH, dissolved oxygen, conductivity and total dissolve solids (TDS). Results from this study showed that The Principal Component Analysis (PCA) revealed two PC’s which had eigenvalues >1.0 and together accounted for 78% total variability of the physio-chemical parameters. PC-1 which accounted 56% of variability defined a normal temperature (23-250C), high water velocity, high dissolved oxygen, low conductivity and low total dissolved solid. While PC-2 explained 22% of the variability was related to water pH. Pearson’s correlation result shows that only velocity had a significant relationship with the abundance of black flies (r=0.512, p<0.01), while other parameters did not show any significant relationship with its abundance. In conclusion, results from this study revealed that only water velocity had a significant relationship with the abundance of black flies.

KEYWORDS: Black flies, physio-chemical parameters, Tambunan.

 

REFERENCES:

  • Adler, P.H., Currie, D.C., & Wood, D.M. (2004). The Black flies (Simuliidae) of North America. ROM Publication in Sciences, New York, NY
  • Adler, P. H. (2005). Black flies, the Simuliidae. In W. C. Marquardt (ed.).Biology of DiseaseVectors, 2ndedition. Elsevier Academic Press, San Diego. 127-140 pp.
  • Butler, J.F & Hogsette, J A. (1998). Blackflies. Simulium spp.(Insecta:Diptera:Simuliidae). University of Florida, IFAS Extension,EENY-030. Retrieved 23th November 2015.(http://entomolpgy.ifas.ufl.edu).
  • Catherine A.H, Jessica P & John F. (2010). Black Flies : Biology and Public Health Risk Department of Entomology. Purdue University, E-251-W.
  • Cummins, K.W. (1988). The functional role of black flies in streamecosystems,pp.1 -10.
  • In Kim, K.C. & Merrit, R.W (eds) Black flies : Ecology, Population Management, and Annotated World List. Pennslvania State University, University Park, P.A.
  • Craig, D.A. (2003). Geomorphology, Development of Running Water Habitats, and Evolutiuon of Black flies on Polynesian Islands. BioScience. 53 (11):1079-1093 pp.
  • Creadie, J.W., Adler, P.H & Beard, C.E. (2011). Ecology of Symbiotes of Larval Blackflies (Diptera: Simuliidae): Distribution, Diversity and Scale. Entomological Society of America. Environmental Entomology. 40 (2): 259-302 pp.
  • Department of Environment. (2006). Malaysia Environmental Quality Report. Ministry of Natural Resources and Environment Malaysia, Kuala Lumpur. 86 pp.
  • Doisy, K.E, Hall, R.D. & Fischer, F.J. (1986). The Black flies (Diptera: Simuliidae) of an Ozark Stream in South Missouri and Associated Water Quality Measurement. Journal of The Kansas Entomology Society. 59 (1): 133-142 pp.
  • Hamada, N., & Grillet, M. E. (2001). Black flies (Diptera  :Simuliidae) of the Gran Sabana keys for larvae and pupae, 16 (1):29-49 pp.
  • Hart, D.D. (1986). The Adaptive Significant of Territoriality in Filter-Feeding Larval Blackflies (Diptera:Simuliidae).Oikos, Vol. 46, (1): 88-92 pp.
  • Laurince, M. Y., Celestin, B. A & Philippe, K. (2013). Composition, abundance and diversity of aquatic insects in fishponds of southern Ivory Coast, West Africa. FaunisticEntomology. 66:123-133 pp.
  • Popoola, K. O. K & Otalekor, A. 2011. Analysis of Aquatic Insect’s Community of Awba Reservoir and its Physio-chemical Properties. Journal of Environmental and Earth Science. 3(4):422- 428 pp.
  • Scheibler, E. E., & Debandi, G. O. 2008. Spatial and Temporal patterns in the aquatic community of high altitude Andean stream (Mendoza, Argentina). Aquatic Insect. Taylor and Francis Group. 30 (2): 145-161
  • Siddaramu, D & Puttaiah, E.T. (2013). Physiochemical characteristic of Balagala Kere and Purali Kere of Shimoga District, Karnataka, India. International Journal of Advanced Research. 1 (8):313-321pp.
  • Srisuka, W. Takaoka. H, Yatsushi, O. Masako. F, Sorawat. T, Kristsana. Y, Wej. C, Atiporn, S. 2015.Seasonal biodiversity of black flies (Diptera: Simuliidae) and evaluation of ecological factor influencing species distribution at Doi Pha Hom Pok National Park, Thailand. Elsevier. 149: 212-219.
  • Takaoka, H. (2001). Two new and three newly recorded species of Black flies(Diptera: Simuliidae) in Sabah, Malaysia.Japanese Journal of Tropical Medicine and Hygiene. 29: 111 114 pp.
  • Takaoka, H. (2008). Taxonomic revision of tuberosum species-group of Simulium (Simulium) in Sabah and Sarawak, Malaysia (Diptera:Simuliidae). Med Entomology and Zoology. 59 (2): 55-80 pp. Takaoka, H., Sofian, M.A. Rosli, H.
  • Yasushi, O. Daicus, M.B. & Tan, P.E. (2012). Relationships of Black fly species of the Simulium tuberosum species group (Diptera: Simuliidae) in Peninsular Malaysia, with keys to ten Malaysia Species. The Raffles Bulletin of Zoology. 60 (2): 533-538 pp.
  • Takaoka, H. (1996). Description of a new species of Simulium (Simulium) from Sabah, Malaysia (Diptera :Simuliidae). Journal of Japan Medical Zoology. 24 (3). 157-161 pp.
  • Tariq, M. , Ali, M & Shah, Z. (2006). Characteristic of industrial effluents and their possible impacts on quality of underground water. Soil & Environment. 25 (1) :64-49pp.
  • Vincent, H., & John, D. 1975. Water Quality Monitoring and Aquatic Organism: The Importance of Species Identification. Vol. (47).No 1, pp.9-19
  • Zhang, Y., Malmqvist, B. & Englund, G. (1998). Ecological processes affecting community structure of black fly larvae in regulated and unregulated rivers. Journal of Applied Ecology, 35: 678-686 pp.
  • Zubaidah, Y. Takaoka, H. Pramual, P. Low, V.L. & Sofian, A.M. 2016. Breeding habitat preference of preimaginal black flies (Diptera: Simuiidae) in Peninular Malaysia. Acta Tropica, Elsevier. 153: 57-63.

Download Full Paper Here (Right-Click and Save As..)