ADSORPTION OF 2,4-DICHLOROPHENOL (2,4-DCP) ONTO ACTIVATED CARBON DERIVED FROM COFFEE WASTE

S M Anisuzzaman1, Collin G. Joseph2,*, Mintshe Tan

1Chemical Engineering Programme, Faculty of Engineering,

Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.

2Industrial Chemistry Programme, Faculty of Science and Natural Resources,

 Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.

*Corresponding author: collin@ums.edu.my

ABSTRACT. In this study, activated carbons (ACs) were prepared from coffee waste via a two-stage self-generated atmosphere method after impregnation by zinc chloride (ZnCl2). The effect of impregnation ratio (IR) on the physicochemical properties and adsorption capacity for 2,4-dichlorophenol (2,4-DCP) was studied. Characterizations of the generated ACs were carried out to determine the percentage of yield, moisture and ash contents, pH, surface chemistry studies and morphological attributes. The results showed that the yield of AC decreased from 41.16% to 37.12% with the increase in IR. As for moisture and ash contents, the percentage values ranged from 4.18% to 6.16% and 9.73% to 10.34% respectively. Meanwhile, the AC samples were slightly acidic with pH values varying between 6.06 and 6.56. The adsorption capacity increased from 16.8 mg/g for AC1 to 21.72 mg/g for AC4. The AC produced with an IR of 4:1 (AC4) had the highest adsorption capacity of 2,4-DCP, which was 21.72 mg/g. The maximum Brunauer, Emmett and Teller (BET) surface area of the best produced AC4 was found to be 951.10 m2/g, which is by far the highest achieved in comparison with other coffee waste-derived ACs reported in the literature. N2 adsorption-desorption graph showed a Type I isotherm, indicating that the AC4 was a microporous solid with chemisorption properties. Langmuir isotherm model was found to be a better fit for the adsorption data when compared to the Freundlich isotherm model.   Pseudo-second order kinetic model was best described for the kinetic of 2,4-DCP adsorption. This proved that 2,4-DCP adsorption by AC4 was a chemisorption process. 

KEYWORDS: Activated carbon, two-stage activation, 2,4-dichlorophenol, coffee waste, adsorption 

REFERENCES

  • Afsharnia, M., Saeidi, M., Zarei, A., Narooie, M. R. and Biglari, H. (2016) Phenol removal from aqueous environment by adsorption onto pomegranate peel carbon, Electron. Physician, 8(11), 3248-3256.
  • Malakootian, M., Mansoorian, H. J., Alizadeh, M. and Baghbanian, A. (2017) Phenol removal from aqueous solution by adsorption process: Study of the nanoparticles performance prepared from aloe vera and mesquite (Prosopis) leaves, Sci. Iran., 24(6), 3041-3052.
  • Palanisamia H, Mohamad R. M. A., Muhammad A. A. Z, Zakariaa Z. A., Alama M. Z. H. Z.  and Yunusa M. A. C. (2021) Coffee residue-based activated carbons for phenol removal , Water Pract. Technol ., 16(3), 793-805. 
  • Anku, W. W., Mamo, M. A. and Govender, P. P. (2017) Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. In: Phenolic Compounds – Natural Sources, Importance and Applications (Soto-Hernandez, M., Palma-Tenango, M. & del Rosario Garcia-Mateos, M., eds). IntechOpen, London.
  • Yousef, R., Qiblawey, H. and El-Naas, M. H. (2020) Adsorption as a process for produced water treatment: a review, Processes, 8(1657), 1-22.
  • Girish. C. R. and George, G. M. (2017) Phenol removal from wastewater using arecanut husk (areca catechu) as adsorbent, Int. J. Mech. Eng. Technol, 8(12), 1-9.
  • Tabassi, D., Soumaya, H., Islem, L. and Bechir, H. (2017) Response surface methodology for optimisation of phenol adsorption by activated carbon: Isotherm and kinetic study Indian J. Chem. Technol., 24(3), 239-255.
  • Yan, K. Z., Ahmad-Zaini, M. A., Arsad, A. and  Nasri, N. S. (2019) Rubber seed shell based activated carbon by physical activation for phenol removal, Chem. Eng. Trans.,  72, 151–156.
  • Mohammed, N. A. S., Abu-Zurayk, R. A., Hamadneh, I. and Al-Dujaili, A. H. (2018) Phenol adsorption on biochar prepared from the pine fruit shells: equilibrium, kinetic and thermodynamics studies. J.Environ.Manage., 226, 377–385
  • Tzvetkova, P. G., Nickolov, R. N., Tzvetkova, C. T., Bozhkov, O. D. and Voykova, D. K. (2016) Diatomite/carbon adsorbent for phenol removal,  J. Chem. Technol. Metall51(2), 202-209.
  • Huu, S. T., Khu, L. V, Thu, T. L. T. and Thanh, H. H. (2020). Kinetic studies on the adsorption of phenol from aqueous solution by coffee husk activated carbon, Mediterr. J. Chem., 10(7), 676-686.
  • Anisuzzaman, S. M., Bono, A., Krishnaiah, D. and Tan, Y. Z. (2016) A study on dynamic simulation of phenol adsorption in activated carbon packed bed columnJ. King Saud Univ. Eng. Sci., 28(1), 47-55.
  • Daffalla, S. B., Mukhtar, H. and Shaharun M. S. (2020) Preparation and characterization of rice husk adsorbents for phenol removal from aqueous systems, PLoS One, 15(12): e0243540.
  • Crini, G. and Lichtfouse, E. (2018). Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17, 145-155. 
  • Sales, F. R. P., Serra, R. B. G., Figueirêdo, G. J. A. D., Hora, P. H. A. D. and Sousa, A. C. D. (2019) Wastewater treatment using adsorption process in column for agricultural purposes, Rev. Ambient. Água., 14(1), 1-9.
  • Agrawal, V. R., Vairagade, V. S. and Kedar, A. P. (2017) Activated carbon as adsorbent in advance treatment of wastewater, IOSR J. Mech. Civ. Eng., 14(4), 36-40. 
  • Adeleke, O. A., Latiff, A. A. A., Saphira, M. R., Daud, Z., Ismail, N., Ahsan, A., Aziz, N. Adila A., Ndah, M., Kumar, V., Adel Al-Gheethi, Rosli, M. A. and Hijab, M. (2019) Locally derived activated carbon from domestic, agricultural and industrial wastes for the treatment of palm oil mill effluent, Nanotechnology in Water and Wastewater Treatment2, 35-62
  • Gawande, P. R. and Kaware, J. (2017) Characterization and activation of coconut shell activated carbon, Int. J. Eng. Sci. Invention, 6(11) 43-49.
  • Saleem. J., Shahid, U., Hijab, M., Mackey, H. and McKay, G. (2019) Production and applications of activated carbons as adsorbents from olive stones, Biomass Convers. Biorefin., 9, 775-802.
  • Ukanwa, K. S., Patchigolla, K. Sakrabani, R. and Anthony, E. (2020) Preparation and characterisation of activated carbon from palm mixed waste treated with trona ore, Molecules. 25(21): 5028, 1-18.
  • Saeed, A. A. H., Harun, N. Y., Sufian, S., Bilad, M. R., Nufida, B. A., Ismail, N. M., Zakaria, Z. Y., Jagaba, A. H., Ghaleb, A. A. S. and Al-Dhawi, B. N. S. (2021) Modeling and optimization of biochar based adsorbent derived from kenaf using response surface methodology on adsorption of Cd2+,” Water, 13(7), 1-18.
  • Ekpete. O. A., Marcus, A. C. and Osi, V. (2017) Preparation and characterization of activated carbon obtained from plantain (Musa paradisiaca) fruit stem, J. Chem., 2017 (8635615), 1-6. 
  • Flores-Cano, J. V., Sanchez-Polo, M., Messoud, J., Velo-Gala, I., Ocampo-Perez, R. and Rivera-Utrilla, J. (2016) Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells, J. Environ. Manage., 169, 116-125.
  • Gonçalves, M., Soler, F. C., Isodaa, N., Carvalhoa, W. A., Mandelli, D. and Sepúlvedac, J. (2016) Glycerol conversion into value-added products in presence of a green recyclable catalyst: Acid black carbon obtained from coffee ground wastes, J. Taiwan Inst. Chem. Eng., 60, 294-301.
  • Tehrani, N. F.,  Aznar, J. S. and Kiros, T. (2015) Coffee extract residue for production of ethanol and activated carbons, J. Clean. Prod., 91, 64-70.
  • Ahmad, M. A. and Rahman, N. K. (2011) Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon. Chem. Eng. J.l, 170(1), 154-161.
  • Lamine, S. M., Ridha, C., Mahfoud, H.-M., Chenine, Mouad, Lotfi, B. and Al-Dujaili A. H. (2014) Chemical activation of an activated carbon prepared from coffee residue, Energy Procedia, 50, 393-400.
  • Boonamnuayvitaya, V., Sae-ung, S. and Tanthapanichakoon, W. (2005) Preparation of activated carbons from coffee residue for the adsorption of formaldehyde, Sep. Purif. Technol.42(2), 159-168.
  • Namanea, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N. and Hellal, A. (2005) Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4J. Hazard. Mater., 119(1-3), 189-194.
  • Wang, X., Liang, X., Wang, Y., Wang, X., Liu, M., Yin, D.Xia S., Zhao J. and Zhang Y. 2011. Adsorption of Copper (II) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation, Desalination, 278(1-3), 231-237.
  • Uysal, T., Duman, G., Onal, Y., Yasa, I. and Yanik, J. (2014) Production of activated carbon and fungicidal oil from peach stone by two-stage process, J. Anal. Appl. Pyrolysis108, 47-55.
  • Metin A, Gürses, A. and Karaca, S. 2014. Preparation and characterization of activated carbon from plant wastes with chemical activation, Microporous Mesoporous Mater., 198, 45-49.
  • Ozdemir, I., Şahin, M., Orhan, R. and Erdem, M. (2014) Preparation and characterization of activated carbon from grape stalk by zinc chloride activation,
    Fuel Process. Technol., 125,  200-206.
  • Zhong, Z., Yang, Q., Li, X., Luo, K., Liu, Y. and Zeng, G. (2012) Preparation of peanut hull based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption. Ind. Crop. Prod., 37(1), 178-185.
  • Özdemir, M., Bolgaz, T., Saka, C. and Sahin, Ö. (2011) Preparation and characterization of activated carbon from cotton stalks in a two-stage process, J. Anal. Appl. Pyrolysis92(1), 171-175.
  • Anisuzzaman, S. M.  Joseph C. G., Krishnaiah D., Bono A.,  Suali E.,  Abang S. and  Fai L. M. (2016) Removal of chlorinated phenol from aqueous media by guava seed (Psidium guajava) tailored activated carbon, Water Res. Ind., 16, 29-36. 
  • Krishnaiah, D., Joseph, C. G., Anisuzzaman, S. M., Daud, W. M. A. W., Sundang M., and Leow, Y. C. (2017) Removal of chlorinated phenol from aqueous solution utilizing activated carbon derived from papaya (Carica Papaya) seeds, Korean J. Chem. Eng.34(5), 1377-1384.
  • Sathishkumar, M., Binupriya, A. R., Kavitha, D. and Yun, S. E. (2007) Kinetic and isothermal studies on liquid-phase adsorption of 2,4-dichlorophenol by palm pith carbon. Bioresour. Technol., 98(4), 866-873.
  • Yakout, S. M. and Elsherif, E. 2010. Batch kinetics, isotherm and thermodynamic studies of adsorption of strontium from aqueous solutions onto low cost rice-straw based carbons. Carbon – Sci. Tech., 1, 144-153.
  • Ma, X. and  Ouyang, F. (2013) Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation, Appl. Surf. Sci., 268, 566-570.
  • Oliveira, L. S.,  Franca, A. S., Alves, T. M. and Rocha, S. D. F. (2008) Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters, J. Hazerd. Mater., 155(3), 507-512.
  • Campos G. A. F., Perez J. P. H., Block I., Sagu S. T., Celis P. S., Taubert A. and Rawel H. M. (2021) Preparation of activated carbons from spent coffee grounds and coffee parchment and assessment of their adsorbent efficiency, Processes, 9(1396), 1-18.

Download Full Paper Here (Right-Click and Save As).