MINERALOGICAL AND GEOCHEMICAL STUDY OF ANDESITE ALTERATION ZONE IN BUKIT MANTRI GOLD MINE, BALUNG, SABAH

Mohd Shafreen Mad Isa1 and Baba Musta2

1, 2 Faculty of Science and Natural Resources,
University Malaysia Sabah, Malaysia,
Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
Email: shafreen@live.com.my1, babamus@ums.edu.my2

ABSTRACT This paper highlights the geochemical compositions and mineralogy of the alteration zone of the andesitic host rock and volcanic breccia in Bukit Mantri area near Balung, Tawau, Sabah, where a gold mining project is now taking place. Minerals identified by XRD analysis include quartz, pyrite, K-feldspar, muscovite, chlorite, kaolinite, hematite, and goethite, while thin section analysis confirms the abundance of pyrite. XRF and ICP-OES analyses suggest a significant concentration of SO3, Cu, Pb, Zn and As, with average values of 2.68wt%, 254μg/g, 236.9μg/g, 232.9μg/g, and 30.6μg/g, respectively, in the hydrothermally altered andesite. The widespread presence of pyrite and higher concentration of SO3 provide insights for environmental control for its higher acidity generation potential. Meanwhile, secondary minerals such as iron and aluminium oxides and silicate minerals may provide acid buffers and reduce the dispersion of constituents.

KEYWORDS geochemistry, mineralogy, hydrothermal alterations, gold mineralisation, Bukit Mantri

 

REFERENCES

  • Clark, C. M., & Downs, R. T. (2004). Using the American Mineralogist Crystal Structure Database in the Classroom. Journal of Geoscience Education, 52(1), 76–80. https://doi.org/10.5408/1089-9995-52.1.76
  • Downs, R. T., & Hall-Wallace, M. (2003). Using the American Mineralogist Crystal Structure Database. American Mineralogist, 88, 247–250. https://doi.org/10.5408/1089-9995-52.1.76
    Haruna, S. A. (2016). Geology and Mineral Exploration in the Bukit Mantri Gold Prospect, Wullersdorf Area, Tawau District.
  • Mackenzie, W. S., Adams, A. E., & Brodie, K. H. (2017). Rocks and Minerals in Thin Section. In Rocks and Minerals in Thin Section (2nd Editio). CRC Press. https://doi.org/10.1201/9781315116365
    Musta, B., Soehady, H. F. W., & Tahir, S. (2008). Geochemical characterization of volcanic soils from Tawau, Sabah. Bulletin of the Geological Society of Malaysia, 54, 33–36. https://doi.org/10.7186/bgsm2008006
  • Nordstrom, D. K. (2011). Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry, 26(11), 1777–1791. https://doi.org/10.1016/j.apgeochem.2011.06.002
  • Nordstrom, D. K., & Alpers, C. N. (1999). Geochemistry of acid mine waters. In G. S. Plumlee & M. J. Logsdon (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues: Society of Economic Geologist, Reviews in Economic Geology (Vol. 6).
  • Plumlee, G. S. (1999). The Environmental Geology of Mineral Deposits. In G. S. Plumlee & M. J. Logsdon (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues: Society of Economic Geologist, Reviews in Economic Geology (pp. 71–116).
  • Smith, K. S. (1999). Metal Sorption on Mineral Surfaces: An Overview with Examples Relating to Mineral Deposits. Review in Economic Geology, 6A-6B, 161–182. https://doi.org/10.1.1.371.7008
    Tahir, S., Musta, B., & Rahim, I. A. (2010). Geological heritage features of Tawau volcanic sequence, Sabah. Bulletin of the Geological Society of Malaysia, 56(56), 79–85. https://doi.org/10.7186/bgsm2010012
  • Winter, J. D. (2014). Principles of Igneous and Metamorphic Petrology (Pearson Ne). Pearson Education Limited.
  • Yan, A. S. W. (1991). Features of volcanic-hosted epithermal gold mineralization in the Nagos and Mantri areas, Sabah. Report No. SB 91/1.

Download Full Paper Here (Right-Click and Save As)