Volume 41 (Issue 2, September 2020)

The Composition of Chitin, Chitosan and its Derivatives in the Context of preparation and Usability – A Review.

– Syaheera Md Zin1, Adnin Awalludin1, Newati Wid1, Kamarulzaman Abd. Kadir2 and Mohd Sani Sarjadi1,*

 

Tourist Satisfaction at Nature-based Tourism Destination around Kota Kinabalu, Sabah

– Talib, H.

 

Estimating Mangrove Above-ground Biomass (AGB) in Sabah, Malaysia Using Field Measurements, Shuttle Radar Topography Mission and Landsat Data

– Charissa Jasmine Wong1, Daniel James1, Normah Awang Besar1 and Mui-How Phua1*

 

Quantifying Aboveground Biomass over 50-Ha Tropical Forest Dynamic Plot in Pasoh, Malaysia Using LiDAR and Census Data

– Hamdan Omar1*, Muhamad Afizzul Misman1  and Yao Tze Leong1

 

Tourist Satisfaction Dimension in Kinabalu Park, Sabah, Malaysia

– Timothy Ajeng Mereng[1], Hamimah Talib1* and Jennifer Chan Kim Lian[2]

 

 

 

 

Volume 41 (Issue 1), March 2020

A REVIEW ON CONSTRUCTED GENETIC CASSETTES IN YEAST FOR RECOMBINANT PROTEIN PRODUCTION
– Sk Amir Hossain1*, Chanchal Mandal1, Toufiq Ahmed1 & S.M Rifat Rahman1

HEAT CONTENT AND BURNING TIME OF TROPICAL PEAT
– 
Dayang Nur Sakinah Musa*, Rebecca Mishallyne Afat, Melissa Sharmah Gilbert, Kamlisa Uni Kamlun

THE OUTLOOK OF RURAL WATER SUPPLY IN DEVELOPING COUNTRY : REVIEW ON SABAH, MALAYSIA
- Rosalam Sarbatly1, Farhana Abd Lahin2*, Chel-Ken Chiam3

ABOVE AND BELOW-GROUND CARBON STOCK IN Acacia mangium STAND IN SABAH
– Tan Chun Hung 1 , Normah Awang Besar 1* , Mohamadu Boyie Jalloh 2 , Maznah Mahali 1 , Nissanto Masri 3

PHYTOCHEMICAL AND ANTIMICROBIAL INVESTIGATION AND COMPARISON BETWEEN YOUNG AND MATURE Psidium guajava LEAVES EXTRACT
- TOMMY NATHANIEL NASIRI, SURAYA ABDUL SANI, RAHMATH ABDULLAH, AINOL AZIFA, MOHD FAIK, ROSLINA JAWAN, AND MOHD KHALIZAN SABULLAH*

CHARACTERIZATION OF OIL PALM LEAF PAPER WITH STARCH AS BINDER
- Sabrina Soloi1*, Adib Afifi Mohammad1

Download FULL Journal HERE

 

 

 

A REVIEW ON CONSTRUCTED GENETIC CASSETTES IN YEAST FOR RECOMBINANT PROTEIN PRODUCTION

Sk Amir Hossain1 *, Chanchal Mandal1, Toufiq Ahmed1 & S.M Rifat Rahman1
1Biotechnology and Genetic Engineering discipline, Khulna University, Khulna, Bangladesh
* Corresponding author: isti_99@yahoo.com

ABSTRACT. Conventional methods for covalent immobilization of proteins often result in denaturation due to chemical treatments. However, proteins immobilized at microbial cell surfaces by regular cellular processes could be bound covalently to the cell wall without being exposed to chemical treatment. Yeasts display systems provide several advantages over bacterial system. The secretory and post-translational pathway in yeast, are similar to those of higher eukaryotes which established them as better hosts for production of eukaryotic proteins. The expression of recombinant proteins immobilized at the cell surface ofSaccharomyces cerevisiae has now been practiced for the last two decades. Although different surface display systems have been made for specific purposes, the system with broad applicability has not been developed so far. Most of the vectors constructed for surface display of recombinant proteins in yeast so far were created for single-use in particular case with ubiquitous laboratory plasmids that were not optimized for this purpose. Therefore, the construction of a new set of plasmids with optimized genetic cassette is still in demand. An optimized genetic cassette should allow easy and simple insertion of any gene of interest, with regulated and easily controlled expression level. In this review, we have tried to make a detailed study on all the genetic components used in successful yeast display systems till now in order to provide a good knowledge which will help the future researchers of this field to design an optimized genetic cassette which would be used for industrial scale application.

KEYWORDS: Yeast display system, yeast cell wall proteins, genetic cassette and recombinant protein.

  • REFERENCE
    Andrés, I., Gallardo, O., Parascandola, P., Javier Pastor, F.I. &Zueco, J. 2005. Use of the cell wall protein Pir4 as a fusion partner for the expression of Bacillus sp. BP‐7 xylanaseA in Saccharomyces cerevisiae. Biotechnology and bioengineering 89(6): 690-697.
  • Boder, E.T. & Wittrup, K.D. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nature biotechnology 15(6): 553.
  • Boder, E.T. & Wittrup, K.D. 2000. Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430-344.
  • Boder, E.T., Bill, J.R., Nields, A.W., Marrack, P.C. & Kappler, J.W. 2005. Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide. Biotechnology and bioengineering 92(4): 485-491.
  • Cabib, E., Roberts, R. & Bowers, B. 1982. Synthesis of the yeast cell wall and its regulation. Annual review of biochemistry 51(1): 763-793.
  • Caro, L.H.P., Tettelin, H., Vossen, J.H., Ram, A.F., Van Den Ende, H. & Klis, F.M. 1997. In silicio identification of glycosyl phosphatidylinositol anchored plasma membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13(15): 1477-1489.
  • Chao, G., Cochran, J.R., & Wittrup, K.D. 2004.Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. Journal of molecular biology 342(2): 539-550.
  • Chen, I., Dorr, B.M. & Liu, D.R. 2011.A general strategy for the evolution of bond-forming enzymes using yeast display.Proceedings of the National Academy of Sciences108(28): 11399- 11404.
  • Cherf, G.M. & Cochran, J.R. 2015.Applications of yeast surface display for protein engineering in yeast surface display.Methods Mol Bio 1319:155-75.
  • Cho, B. K., Kieke, M. C., Boder, E. T., Wittrup, K. D., &Kranz, D. M. (1998). A yeast surface display system for the discovery of ligands that trigger cell activation. Journal of immunological methods, 220(1-2), 179-188. Colby, D.W.,
  • Garg, P., Holden, T., Chao, G., Webster, J.M., Messer, A., …& Wittrup, K.D. 2004. Development of a human light chain variable domain (VL) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. Journal of molecular biology 342(3): 901 -912.
  • Colby, D.W., Kellogg, B.A., Graff, C.P., Yeung, Y.A., Swers, J.S. & Wittrup, K.D. 2004.Engineering antibody affinity by yeast surface display.Methods Enzymol 388: 348- 358.
  • Ecker, M., Deutzmann, R., Lehle, L., Mrsa, V. & Tanner, W. 2006.Pir proteins of Saccharomyces cerevisiae are attached to β-1, 3-glucan by a new protein-carbohydrate linkage. Journal of Biological Chemistry 281(17): 11523-11529.
  • Feldhaus, M.J., Siegel, R.W., Opresko, L.K., Coleman, J.R., Feldhaus, J.M.W., Yeung, Y.A. , …& Graff, C. 2003. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nature biotechnology 21(2): 163.
  • Furukawa, H., Tanino, T., Fukuda, H. & Kondo, A. 2006. Development of novel yeast cell surface display system for homo oligomeric protein by coexpression of native and anchored subunits. Biotechnology progress 22(4): 994-997.
  • Gai, S.A. & Wittrup, K.D. 2007. Yeast surface display for protein engineering and characterization.
    Current opinion in structural biology 17(4): 467-473. Han, T., Sui, J., Bennett, A., Liddington, R.C., Donis, R.O., Zhu, W. & Marasco, W.A. 2012. Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem biophys res commun 409(2): 253-259.
  • Hossain, S.A. 2018. Surface display of heterologous proteins in the yeast cell wall and their application in biotechnology. Doctoral dissertation, Faculty of food technology and biotechnology, University of Zagreb, Croatia.
  • Jarjour, J., West-Foyle, H., Certo, M.T., Hubert, C.G., Doyle, L., Getz, M.M., …& Scharenberg, A.M. 2009. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic acids research 37(20): 6871 -6880.
  • Jarjour, J., West-Foyle, H., Certo, M.T., Hubert, C.G., Doyle, L., Getz, M.M., …& Scharenberg, A.M. 2009. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic acids research 37(20): 6871 -6880.
  • Kaya, M., Ito, J., Kotaka, A., Matsumura, K., Bando, H., Sahara, H., …& Kondo, A. 2008. Isoflavoneaglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillusoryzae on yeast cell surface. Applied Microbiology and Biotechnology 79(1): 51 -60.
  • Kieke, M.C., Cho, B.K., Boder, E.T., Kranz, D.M. &Wittrup, K.D. 1997.Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein engineering 10(11): 1303-1310.
  • Klis, F.M., Boorsma, A. & De Groot, P.W. 2006.Cell wall construction in Saccharomyces cerevisiaeYeast 23(3): 185-202.
  • Klis, F.M., Mol, P., Hellingwerf, K. & Brul, S. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS microbiology reviews 26(3): 239-256.
  • Kollár, R., Petráková, E., Ashwell, G., Robbins, P.W. & Cabib, E. 1995.Architecture of the yeast cell wall the linkage between chitin and β (13)-glucan. Journal of Biological Chemistry 270(3): 1170-1178.
  • Kollár, R., Reinhold, B.B., Petráková, E., Yeh, H.J., Ashwell, G.,Drgonová, J., …& Cabib, E. 1997. Architecture of the yeast cell wall β (1→ 6)-glucan interconnects mannoprotein, β (1→ 3)- glucan, and chitin. Journal of Biological Chemistry 272(28): 17762-17775.
  • Lee, H.W., Lee, S.H., Park, K.J., Kim, J.S., Kwon, M.H. & Kim, Y.S. 2006. Construction and characterization of a pseudo-immune human antibody library using yeast surface display. Biochem and biophys res commun 346(3): 896-903.
  • Levin, D.E. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189(4): 1145-1175.
  • Levy, R., Forsyth, C.M., LaPorte, S.L., Geren, I.N., Smith, L.A. & Marks, J.D. 2007. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. Journal of molecular biology 365(1): 196-210.
  • Levy, R., Forsyth, C.M., LaPorte, S.L., Geren, I.N., Smith, L.A., & Marks, J.D. 2007. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. Journal of molecular biology365(1): 196-210.
  • Li, J., Wang, Y., Liang, Y., Ni, B., Wan, Y., Liao, Z., …& Wang, S. 2009. Fine antigenic variation within H5N1 influenza virus hemagglutinin’s antigenic sites defined by yeast cell surface display. European journal of immunology 39(12): 3498-3510.
  • Lipke, P.N. & Ovalle, R. 1998. Cell wall architecture in yeast: new structure and new challenges. Journal of bacteriology 180(15): 3735-3740.
  • Magnelli, P., Cipollo, J.F. & Abeijon, C. 2002.A refined method for the determination of Saccharomyces cerevisiaecell wall composition and β-1, 6-glucan fine structure.Analytical biochemistry 301(1): 136-150.
  • Matano, Y., Hasunuma, T. & Kondo, A. 2012.Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresource technology 108: 128-133.Sk Amir Hossain, Chanchal Mandal, Toufiq Ahmed & S.M Rifat Rahman Matsumoto, T., Fukuda, H., Ueda, M., Tanaka, A. & Kondo, A. 2002. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl. Environ. Microbiol.68(9): 4517-4522.
  • Moukadiri, I. & Zueco, J. 2001.Evidence for the attachment of Hsp150/Pir2 to the cell wall of Saccharomyces cerevisiae through disulfide bridges.FEMS yeast research 1(3): 241 -245.
  • Murai, T., Ueda, M., Yamamura, M., Atomi, H., Shibasaki, Y., Kamasawa, N., …& Tanaka, A. 1997. Construction of a starch-utilizing yeast by cell surface engineering. Appl. Environ. Microbiol. 63(4): 1362-1366.
  • Nakamura, Y., Shibasaki, S., Ueda, M., Tanaka, A., Fukuda, H. & Kondo, A. 2001. Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Applied microbiology and biotechnology 57(4): 500-505.
  • Orlean, P. 1997. Biogenesis of Yeast Wall and Surface Components. Cold Spring Harbor Monograph Archive 21: 229-362.
  • Orlean, P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall.Genetics 192(3): 775-818.
  • Orr, B.A., Carr, L.M., Wittrup, K.D., Roy, E.J. &Kranz, D.M. 2003.Rapid method for measuring ScFv thermal stability by yeast surface display. Biotechnology progress 19(2): 631 -638.
  • Osumi, M. 1998. The ultrastructure of yeast: cell wall structure and formation. Micron 29(2-3): 207- 233.
  • Pagé, N., Gérard-Vincent, M., Ménard, P., Beaulieu, M., Azuma, M., Dijkgraaf, G.J., …& Sdicu, A.M. 2003. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin.Genetics 163(3): 875-894.
  • Parthasarathy, R., Subramanian, S., Boder, E.T. & Discher, D.E. 2006.Post‐translational regulation of expression and conformation of an immunoglobulin domain in yeast surface display. Biotechnology and bioengineering 93(1): 159-168.
  • Richman, S.A., Kranz, D.M., & Stone, J.D. 2009. Biosensor detection systems: engineering stable, high-affinity bioreceptors by yeast surface display. Methods MolBiol 504: 323-350.
  • Ruiz-Herrera, J. 2016.Fungal cell wall: structure, synthesis, and assembly.CRC press.
  • Shusta, E.V., Pepper, L.R., Cho, Y.K. & Boder, E.T. 2008. A decade of yeast surface display technology: where are we now? Combinatorial chemistry & high throughput screening 11(2): 127-134.
  • Szczupak, A., Kol-Kalman, D. & Alfonta, L. 2012. A hybrid biocathode: surface display of O 2- reducing enzymes for microbial fuel cell applications. Chemical Communications 48(1): 49-51.
  • Tsai, S.L., DaSilva, N.A. & Chen, W. 2012.Functional display of complex cellulosomes on the yeast surface via adaptive assembly.ACS synthetic biology 2(1): 14-21.
  • Ueda, M. & Tanaka, A. 2000.Genetic immobilization of proteins on the yeast cell surface. Biotechnology advances 18(2): 121 -140.
  • Van Antwerp, J.J. & Wittrup, K.D. 2000. Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnology progress 16(1): 31 -37.
  • Van der Vaart, J.M., Caro, L.H., Chapman, J.W., Klis, F.M. &Verrips, C.T. 1995.Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. Journal of bacteriology 177(11): 3104-3110.
  • Wang, K.C., Patel, C.A., Wang, J., Wang, J., Wang, X., Luo, P.P. & Zhong, P. 2010. Yeast surface display of antibodies via the heterodimeric interaction of two coiled-coil adapters. Journal of immunological methods 354(1-2): 11 -19.
  • Yang, N., Yu, Z., Jia, D., Xie, Z., Zhang, K., Xia, Z., …& Qiao, M. 2014. The contribution of Pir protein family to yeast cell surface display. Applied microbiology and biotechnology 98(7): 2897-2905.
  • Yue, L., Chi, Z., Wang, L., Liu, J., Madzak, C., Li, J. & Wang, X. 2008.Construction of a new plasmid for surface display on cells of Yarrowia lipolytica. Journal of Microbiological
    Methods 72(2): 116-123

Download Full Paper Here (Right-Click and Save As)

HEAT CONTENT AND BURNING TIME OF TROPICAL PEAT

Dayang Nur Sakinah Musa*, Rebecca Mishallyne Afat, Melissa Sharmah Gilbert, Kamlisa Uni Kamlun

Forestry Complex, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.

*Corresponding author : dns.m@ums.edu.my

ABSTRACT. Peat composes of organic matter and easily drying out during the dry season. This situation will result in a smouldering fire in peat swamp forest especially with the help of El-Nino phenomenon and eventually will destroy home for endangered species such as Orangutan. It is important in order to study the effect of forest fire on peat thermal properties. The study was conducted in Binsuluk Forest Reserve, Sabah, Malaysia, The aims of this study were to measure the heat of content and burning time of peat at a different level and to find the relationship of the heat of content in Binsuluk Forest Reserve. Samples of burnt peat were taken using an auger at 1.5 m, 2.0 m, 2.5 m and 3.0 m depths. The peat samples were tested for heat of content (MJ Kg-1) and burning time (minutes). Results shown that peat has a higher heat of content at a depth of 3.0 m with 51.652.07 MJ Kg-1 and lower heat of content at 2.5 m depth with 49.600.46 MJ Kg-1. Burnt peat takes longer time recorded at 3.0 m peat depth with mean value of 127.201.88 minutes and the shorter time recorded at the depth of 1.5 m with mean 101.400.51 minutes. Thus, these data suggest that increases in the heat of content of the peat can increase the time for the peat to completely burnt. The heat content and burning time were perhaps influenced by the moisture content of the peat in Binsuluk Forest Reserve with range of moisture content between 209.880.18 % to 1013.511.39 % . The information on thermal properties of peat in Sabah is important for the forest managers and researchers to get an idea of the impact of forest fire on peat and can create better management on the peat swamp forest area.

KEYNOTES: Peat swamp forest, Peat fire, Burning time, Heat of Content

 

REFERENCE

  • Boehm, H. D. V., Siegert, F., Rieley, J. O., Page, S. E., Jauhiainen, J., Vasander, H., & Jaya, A. (2001, November). Fire Impacts And Carbon Release On Tropical Peatlands In Central Kalimantan, Indonesia. In Proceedings Of The 22nd Asian Conference On Remote Sensing (Pp. 5-9). Cattau, M. E., Harrison, M. E., Shinyo, I., Tungau, S., Uriarte, M., & DeFries, R. (2016). Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Global Environmental Change, 39, 205-219.
  • Comas, X., Terry, N., Slater, L., Warren, M., Kolka, R., Kristiyono, A., … & Darusman, T. (2015). Imaging Tropical Peatlands In Indonesia Using Ground-Penetrating Radar (Gpr) And Electrical Resistivity Imaging (Eri): Implications For Carbon Stock Estimates And Peat Soil Characterization. Biogeosciences, 12(10), 2995-3007. Frandsen, W.H. (1997). Ignition probability of organic soils. Canadian Journal of Forest Research, 27(9), 1471 -1477.
  • Huang, X., & Rein, G. (2019). Upward-and-downward spread of smoldering peat fire. Proceedings of the Combustion Institute, 37(3), 4025-4033. Huang, X., Francesco, R., Michela, G., & Guillermo, R. (2016). “Experimental Study of the Formation and Collapse of an Overhang in the Lateral Spread of Smouldering Peat Fires.” Combustion and Flame 168: 393–402. IKA. (1998). IKA-Calorimeter system C 5000 Manual.
  • Melling, L., Uyo, L. J., Goh, K. J., Hatano, R., & Osaki, M. (2006). Soils Of Loagan Bunut National Park, Sarawak, Malaysia-Final Report. Undp/Gef Funded Project On The Conservation And Sustainable Use Of Tropical Peat Swamp Forests And Associated Wetland Ecosystems.
  • Musa, D.N.S., & Ramli, S.N. (2017). “Fire Threat in Peat Swamp Forest in Malaysia.” In Biology Vol. 1 Emerging Themes in Fundamental and Applied Sciences, , Chapter 3. Musa, D. N. S., & Nuruddin, A.A. (2015). “Calorific Value of Leaves of Selected Dipterocarp Trees Species in Piah Forest Reserve, Perak.” Journal of Tropical Resources and Sustainable Science 3(1): 132–34.
  • Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global And Regional Importance Of The Tropical Peatland Carbon Pool. Global Change Biology, 17(2), 798-818.
  • Putra, R., Sutriyono, E., Kadir, S., & Iskandar, I. (2019). UNDERSTANDING OF FIRE DISTRIBUTION IN THE SOUTH SUMATRA PEAT AREA DURING THE LAST TWO DECADES. INTERNATIONAL JOURNAL OF GEOMATE, 16(54), 146-151.
  • Rein, G., Cohen, S., & Simeoni, A. (2009). Carbon Emissions From Smouldering Peat In Shallow And Strong Fronts. Proceedings Of The Combustion Institute, 32(2), 2489-2496. SFD. (201 6). Sabah Forestry Department Annual Report 201 6. Pg.219. SFD. (2019). Map of Binsuluk Forest Reserve (Class 1).
  • Syaufina, L., Nuruddin, A. A., Basharuddin, J., See, L. F., & Yusof, M. R. M. (2004). The effects of climatic variations on peat swamp forest condition and peat combustibility. Jurnal Manajemen Hutan Tropika, 10(1).
  • Usup, A., Hashimoto, Y., Takahashi, H., & Hayasaka, H. (2004). Combustion And Thermal Characteristics Of Peat Fire In Tropical Peatland In Central Kalimantan, Indonesia. Tropics, 14(1), 1 -19.
  • Yoshino, K., Nagano, T., Ishida, T., Ishioka, Y., & Sirichuaychoo, W. (2002). Distribution Of Peat Depth In Tropical Peat Swamp Area In Narathiwat Of The Southern Part Of Thailand. Rural
    And Environment Engineering, 2002(43), 13-22.
  • Zainorabidin, A., & Mohamad, H. M. (2016). A Geotechnical Exploration Of Sabah Peat Soil: Engineering Classifications And Field Surveys. Ejge, 21, 6671 -6687.

 

Download Full Paper Here (Right-Click and Save As)

THE OUTLOOK OF RURAL WATER SUPPLY IN DEVELOPING COUNTRY: REVIEW ON SABAH, MALAYSIA

Rosalam Sarbatly1, Farhana Abd Lahin2*, Chel-Ken Chiam3
1, 2, 3 Membrane Technology Research Group, Material and Mineral Research Unit, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, MALAYSIA

Email: 1rslam@ums.edu.my, 2*farhana.abdlahin@ums.edu.my, 3chiamchelken@ums.edu.my

ABSTRACT. This paper reviews the challenges in the water supply provision, water source availability and quality and the distribution approaches in rural Sabah. The main challenges to provide potable water in Sabah is the variance in terrain and geographical distance between populated regions. Review reveals that other than the river water, average annual precipitation of 3000 millimetres (mm) could be harvested for domestic and agricultural purposes. Numbers of aquifer uncovered in the eastern and western region of Sabah with underlying sandstone and Quaternary Alluvium have significant potential for groundwater reservoirs. Aquifer along the coastal areas and islands around Sabah also gives sufficient potable water supplies. Minimal pollutant content was found in all water sources and acceptable under the National Water Standard of Malaysia, except for contaminants coming from septic tanks and agricultural activities. A decentralized water system is more beneficial for Sabah’s rural areas. Smaller scaled plants are flexible to collect from any water sources and treat at the point of use. Expenditure is significantly decreased by a shorter distribution network and lower installation and maintenance cost. Nonetheless, the treatment utilized may be limited to a simpler process as semiskilled or un-skilled personnel will be required to operate and maintain the system.

KEYWORDS: Groundwater, Malaysia, rainwater, rural area, surface water, water supply

REFERENCE

  • Abd Razak, Y. and Abd Karim, M. H. (2009) “Groundwater in the Malaysian Context” in Groundwater Colloquium 2009, Groundwater Management in Malaysia -Status and Challenges. Putrajaya, Malaysia, Academy of Sciences Malaysia (ASM), 1 –14.
  • Abdullah, M. H. and Musta, B. (1999) Phreatic Water Quality of the Turtle Islands of East Malaysia: Pulau Selingaan and Pulau Bakkugan Kechil. Borneo Science, 6, 1–9.
  • Abdullah, M. H., Musta, B., and Md. Tan, M. (1997) A Preliminary Geochemical Study on Manukan Island, Sabah. Borneo Science, 3, 43–51.
  • Van Afferden, M., Cardona, J. A., Müller, R. A., Lee, M. Y., and Subah, A. (2015) A new approach to implementing decentralized wastewater treatment concepts. Water Science and Technology, 72(11), 1923–1930.
  • Ahmed, W., Gardner, T., and Toze, S. (2011) Microbiological Quality of Roof-Harvested Rainwater and Health Risks: A Review. Journal of Environment Quality, 40(1), 13. [online] https://www.agronomy.org/publications/jeq/abstracts/40/1/13.
  • Alahmr, F. O. M., Othman, M., Abd Wahid, N. B., Halim, A. A., and Latif, M. T. (2012) Compositions of dust fall around semi-Urban Areas in Malaysia. Aerosol and Air Quality Research, 12(4), 629–642.
  • Almeida, C. and Soares, F. (2012) Microbiological monitoring of bivalves from the Ria Formosa Lagoon (south coast of Portugal): A 20years of sanitary survey. Marine Pollution Bulletin,
    64(2), 252–262. [online] http://dx.doi.org/10.1016/j.marpolbul.2011.11.025.
  • Ani, A. I. . (2009) Rainwater harvesting system evaluation: A resident experience in Sabah, Malaysia. International Symposium in Developing Economies: Commonalities Among Diversities, 26– 39.
  • Appan, A. (1997) Roof water collection systems in some Southeast Asian countries: Status and water quality levels. Journal of the Royal Society of Health, 117(5), 319–323. [online] http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed4&NEWS=N&AN= 1998050802.
  • Ariffin, M. and Sulaiman, S. N. M. (2015) Regulating Sewage Pollution of Malaysian Rivers and its Challenges. Procedia Environmental Sciences, 30, 168–173. [online] http://linkinghub.elsevier.com/retrieve/pii/S1878029615006246.
  • Aris, A. Z., Abdullah, M. H., and Kim, K. (2007) Hydrogeochemistry of Groundwater in Manukan Island, Sabah. The Malaysian Journal of Analytical Sciences, 11(2), 407–413.
  • Aris, A. Z., Lim, W. Y., Praveena, S. M., Yusoff, M. K., Ramli, M. F., and Juahir, H. (2014) Water Quality Status of Selected Rivers in Kota Marudu , Sabah , Malaysia and its Suitability for Usage. Sains Malaysiana, 43(3), 377–388.
  • Asano, T., Burton, F. L., Leverenz, H. L., Tsuchihashi, R., and Tchobanoglous, G. (2007) Water Reuseissues, Technologies and Applications, New York, USA, McGraw Hill.
  • ASM (2011) Sustaining Malaysia ’ s Future: Mega Science Framework Study Water Sector - Final Report,
  • Atta, M., Yaacob, W. Z. W., and Jaafar, O. Bin (2015) The potential impact of leachate-contaminated groundwater of an ex-landfill site at Taman Beringin Kuala Lumpur, Malaysia. Environmental Earth Sciences, 73(7), 3913–3923. [online] http://link.springer.com/10.1007/s12665-014-3675-x.
  • Ayob, S. and Rahmat, S. N. (2017) Rainwater Harvesting ( RWH ) and Groundwater Potential as Alternatives Water Resources in Malaysia : A Review. MATEC Web Conference,
    04020(103).
  • Ayog, J., Ayog, J. L., Dullah, S., and Ramli, R. (2016) Harvested Rainwater Quality Assessment on the Effects of Roof Materials to the First Flush Runoff. Transactions on Science and Technology, 271 –276.
  • Barde, J. A. (2017) What Determines Access to Piped Water in Rural Areas? Evidence from SmallScale Supply Systems in Rural Brazil. World Development, 95, 88–110. [online] http://dx.doi.org/10.1016/j.worlddev.2017.02.012. van den Berg, C. (2015) Drivers of non-revenue water: A cross-national analysis. Utilities Policy, 36, 71–78. [online] http://dx.doi.org/10.1016/j.jup.2015.07.005.
  • Burford, M. A., Revill, A. T., Smith, J., and Clementson, L. (2012) Effect of sewage nutrients on algal production, biomass and pigments in tropical tidal creeks. Marine Pollution Bulletin, 64(12), 2671–2680. [online] http://dx.doi.org/10.1016/j.marpolbul.2012.10.008.
  • Chan, N. W. (2006) A comparative study of water resources usage by households in GeorgetownMalaysia and Pattaya-Thailand. Iranian Journal of Environmental Health Science & Engineering, 3(4), 223–228. [online] http://journals.tums.ac.ir/abs/3377.
  • Che-Ani, A. I., Shaari, N., Sairi, A., Zain, M. F. M., and Tahir, M. M. (2009) Rainwater harvesting as an alternative water supply in the future. European Journal of Scientific Research, 34(1), 132– 140. [online] http://www.scopus.com/inward/record.url?eid=2-s2.0- 68849093029&partnerID=tZOtx3y1.
  • Chen, F. and Yao, Q. (2014) The Development of Rural Domestic Wastewater Treatment in China. Advanced Materials Research, 10731076, 829–832.
  • Chen, Z., Ngo, H. H., and Guo, W. (2013) A Critical Review on the End Uses of Recycled Water. Critical Reviews in Environmental Science and Technology, 43(14), 1446–1516. [online] https://doi.org/10.1080/10643389.2011.647788.
  • Chen, Z., Wu, Q., Wu, G., and Hu, H. Y. (2017) Centralized water reuse system with multiple applications in urban areas: Lessons from China’s experience. Resources, Conservation and Recycling, 117, 125–136. [online] http://dx.doi.org/10.1016/j.resconrec.2016.11.008.
  • Chu, L. H. (2004) Groundwater Utilization and Management in Malaysia. Thematic Session on Geoenvironment of Delta and Groundwater Management in East and Southeast Asia, CCOP Annual Session, 83–93. [online] http://www.ccop.or.th/download/pub/41as_ii.pdf.
  • Cleophas, F. N., Isidore, F., Han, L. K., and Bidin, K. (201 3) Water quality status of Liwagu River , Tambunan , Sabah , Malaysia. Journal of Tropical Biology and Conservation, 10, 67–73.
  • Cravo, A., Fernandes, D., Dami??o, T., Pereira, C., and Reis, M. P. (2015) Determining the footprint of sewage discharges in a coastal lagoon in South-Western Europe. Marine Pollution Bulletin,
    96(1–2), 197–209. [online] http://dx.doi.org/10.1016/j.marpolbul.2015.05.029.
  • Crites, R. W. and Tchobanoglous, G. (1998) Small and decentralized wastewater management systems, New York, McGraw-Hill. Davis, M. L. and Cornwell, D. A. (2013) Introduction to Environmental Engineering, Singapore, Mc Graw Hill.
  • Despins, C., Farahbakhsh, K., and Leidl, C. (2009) Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. Journal of Water Supply: Research and Technology AQUA, 58(2), 117–134. DHI (2011) Non-Revenue Water: Custom solutions for water utilities to reduce leakage and optimise pipe networ management. DHI Solution. DID (2009) Rainwater Harvesting: Guidebook on Planning and Design, Drainage, Malaysian Department of Irrigation and Drainage.
  • Distefano, T. and Kelly, S. (2017) Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130–147. [online] http://dx.doi.org/10.1016/j.ecolecon.2017.06.019.
  • Elango, L. and Kannan, R. (2007) Rock-water interaction and its control on chemical composition of groundwater. Concepts and Applications in Environmental Geochemistry, 5(07), 229–246. [online] http://www.sciencedirect.com/science/article/pii/S1474817707050115 (Accessed November 28, 2017).
  • Engin, G. O. and Demir, I. (2006) Cost analysis of alternative methods for wastewater handling in small communities. Journal of Environmental Management, 79(4), 357–363.
  • Fahnline, E. (2013) The production and remediation of malaysia’s groundwater resources. Ensearch Sustainability and Environmental Management Conf. and Exhibition, 1 –52.
  • Faisal, M., Omang, S. A. K., and Tahir, S. (1994) Geology of Kota Kinabalu and its implications to groundwater potential. Geololy Society Malaysia, Bulletin, 38, 11–20.
  • Falco, G. J. and Webb, W. R. (2015) Water Microgrids: The Future of Water Infrastructure Resilience. Procedia Engineering, 118, 50–57.
  • Giri, R. R., Takeuchi, J., and Ozaki, H. (2006) Biodegradation of domestic wastewater under the simulated conditions of Thailand. Water and Environment Journal, 20(3), 169–176.
  • Harun, S., Dambul, R., Abdullah, M. H., and Mohamed, M. (2014) Spatial and seasonal variations in surface water quality of the Lower Kinabatangan River Catchment , Sabah , Malaysia. Journal of Tropical Biology and Conservation, 11, 117–131.
  • Harun, S. and Fikri, A. H. (2016) Report on Water Quality Monitoring in Sugut River and its Tributaries, Kota Kinabalu, Sabah.
  • Hasan, H. H., Jamil, N. R., and Aini, N. (2015) Water Quality Index and Sediment Loading Analysis in Pelus River, Perak, Malaysia. Procedia Environmental Sciences, 30, 133–138. [online] http://linkinghub.elsevier.com/retrieve/pii/S1878029615006180.
  • Heng, L. Y., Chukong, L. N., Stuebing, R. B., and Omar, M. (2006) The Water Quality of Several Oxbow Lakes in Sabah, Malaysia and its Relation to Fish Fauna Distribution. Journal of Biological Sciences, 2(6), 365–369.
  • Higuerey, A., Trujillo, L., and González, M. M. (2017) Has efficiency improved after the decentralization in the water industry in Venezuela? Utilities Policy, 49, 127–136.
  • Hing, T. T. (1994) Hydrochemistry of groundwater at Sahabat region, Sabah. Newsletter of the Geological Society of Malaysia., 20(3), 229–230.
  • Hussein, M., Yoneda, K., Othman, N., Mohd Zaki, Z., and Mohd Yusof, M. H. (2017) Effects of Number of Connections and Pipe Length To the Water Losses in Melaka. Jurnal Teknologi, 79(3), 45–59. [online] http://www.jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/9874.
  • Huston, R., Chan, Y. C., Chapman, H., Gardner, T., and Shaw, G. (2012) Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Research, 46(4), 1121 –1132. [online] http://dx.doi.org/10.1016/j.watres.2011.12.008.
  • Isa, N. M., Aris, A. Z., Lim, W. Y., Sulaiman, W. N. A. W., and Praveena, S. M. (2014) Evaluation of heavy metal contamination in groundwater samples from Kapas Island, Terengganu, Malaysia. Arabian Journal of Geosciences, 7(3), 1087–1100. Ismail, W. M. Z. W. (2009) “Groundwater for Domestic Needs in Kelantan” in Groundwater Colloquium 2009, Groundwater Management in Malaysia -Status and Challenges., 149–156.
  • Jasin, B. and Tating, F. F. (1991) Late Eocene planktonic Foraminifera from the Crocker Formation, Pun Batu, Sabah. Warta Geologi, 17(4), 187–191. JBA (2014) Jabatan Bekalan Air (JBA) – Empangan Air Negeri Johor. Sabah Water Dam. [online] http://www.jba.gov.my/index.php/en/empangan-air-negeri-sabah (Accessed January 19, 2018).
  • Jeong, H., Broesicke, O. A., Drew, B., and Crittenden, J. C. (2018) Life cycle assessment of smallscale greywater reclamation systems combined with conventional centralized water systems for the City of Atlanta, Georgia. Journal of Cleaner Production, 174, 333–342. [online] http://linkinghub.elsevier.com/retrieve/pii/S0959652617325015.
  • Kadhum, S. A., Ishak, M. Y., Zulkifli, S. Z., and Hashim, R. binti (2015) Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Marine Pollution Bulletin, 101(1), 391 –396.
  • Kasmin, H., Bakar, N. H., and Zubir, M. M. (2016) Monitoring on The Quality and Quantity of DIY Rainwater Harvesting System. IOP Conference Series: Materials Science and Engineering, 136, 1 –8. [online] http://stacks.iop.org/1757 – 899X/136/i=1/a=012067?key=crossref.fff6394d3e607d908e96ee0ecfd1f8f3.
  • Kelly, E., Lee, K., Shields, K. F., Cronk, R., Behnke, N., Klug, T., and Bartram, J. (2017) The role of social capital and sense of ownership in rural community-managed water systems: Qualitative evidence from Ghana, Kenya, and Zambia. Journal of Rural Studies, 56, 156–166. [online] https://doi.org/10.1016/j.jrurstud.2017.08.021.
  • Krishna, J. (2005) The Texas Manual on Rainwater Harvesting, Austin, Texas. [online] http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+Texas+Manual+on+ Rainwater+Harvesting#0.
  • Kura, N. U., Ramli, M. F., Sulaiman, W. N. A., Ibrahim, S., and Aris, A. Z. (2015) An overview of groundwater chemistry studies in Malaysia. Environmental Science and Pollution Research, 1–19. [online] http://dx.doi.org/10.1007/s11356-015-5957-6.
  • Lee, C. (2011) Privatization, water access and affordability: Evidence from Malaysian household expenditure data. Economic Modelling, 28(5), 2121 –2128. [online] http://dx.doi.org/10.1016/j.econmod.2011.05.003.
  • Lee, J. Y., Yang, J. S., Han, M., and Choi, J. (2010) Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources. Science of the Total Environment, 408(4), 896–905. [online] http://dx.doi.org/10.1016/j.scitotenv.2009.11.001.
  • Lee, K. E., Mokhtar, M., Mohd Hanafiah, M., Abdul Halim, A., and Badusah, J. (2016) Rainwater harvesting as an alternative water resource in Malaysia: potential, policies and development. Journal of Cleaner Production, 126, 218–222.
  • Leong, J. Y. C., Oh, K. S., Poh, P. E., and Chong, M. N. (2017) Prospects of hybrid rainwatergreywater decentralised system for water recycling and reuse: A review. Journal of Cleaner Production, 142, 3014–3027.
  • Liang, X. and van Dijk, M. P. (2010) Financial and economic feasibility of decentralized wastewater reuse systems in Beijing. Water science and technology : a journal of the International Association on Water Pollution Research, 61(8), 1965–1973.
  • Liew, W. L., Kassim, M. A., Muda, K., Loh, S. K., and Affam, A. C. (2014) Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review. Journal of Environmental Management, 149, 222–235. [online] http://dx.doi.org/10.1016/j.jenvman.2014.10.016.
  • Lin, C. Y., Abdullah, M. H., Aris, A. Z., and Praveena, S. M. (2009) A Baseline Study on Groundwater Quality of the A Baseline Study on Groundwater Quality of the Tourist Island , Pulau. Modern Applied Science, 3(5), 62–74.
  • Liu, J., Liu, Q., and Yang, H. (2016) Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecological Indicators,
    60, 434–441. [online] http://dx.doi.org/10.1016/j.ecolind.2015.07.019.
  • Loo, Y. Y., Billa, L., and Singh, A. (2015) Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6(6), 817–823. [online] http://linkinghub.elsevier.com/retrieve/pii/S167498711400036X (Accessed August 29, 2017). Malaysian Meteorological Department (2017) Malaysian Climate. MET Malaysia, 1 –2. [online] http://www.met.gov.my/in/web/metmalaysia/climate/generalinformation/malaysia?p_p_id= 56_INSTANCE_zMn7KdXJhAGe&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view &p_p_col_id=column- 1&p_p_col_pos=1&p_p_col_count=2&_56_INSTANCE_zMn7KdXJhAGe_page=1 (Accessed September 5, 2017).
  • Man, S. (2015) Sistem penuaian air hujan : Kajian kes kesediaan masyarakat di Rainwater harvesting : A case study of public readiness in Bandar. , 11(11), 53–62. Manap, M. A., Sulaiman, W. N. A., Ramli, M. F., Pradhan, B., and Surip, N. (2013) A knowledge driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arabian Journal of Geosciences, 6(5), 1621 –1637.
  • Mara, G. (2004) Domestic Wastewater Treatment in Developing Countries, New York, Earthscan. Ministry of Finance Malaysia (2017) Malaysian Budget Report, Kuala Lumpur, Malaysia.
  • MMOH, M. M. of H. (2010) Drinking Water Quality Surveillance Programme – Ministry of Health. [online] http://kmam.moh.gov.my/public- user/drinking-water-quality-standard.html. National Water Services Commission (2016) Non Revenue Water (NRW), [online] http://www.span.gov.my/index.php/en/statistic/water-statistic/non-revenue-water- nrw-2016.
  • Nicholson, N., Clark, S. E., Long, B. V, Spicher, J., and Steele, K. a (2009) “Rainwater Harvesting for Non-Potable Use in Gardens: A Comparison of Runoff Water Quality from Green vs. Traditional Roofs” in World Environmental and Water Resources Congress 2009.
  • Reston, VA, American Society of Civil Engineers, 1 –10. [online] http://ascelibrary.org/doi/10.1061/41036%28342%29146. NRO (1994) Natural Resources Office Sabah: Water Resources Master Plan, Final Report Overview,
  • Nyemba, A., Manzungu, E., Masango, S., and Musasiwa, S. (2010) The impact of water scarcity on environmental health in selected residential areas in Bulawayo City, Zimbabwe. Physics and Chemistry of the Earth, 35(13–14), 823–827. [online] http://dx.doi.org/10.1016/j.pce.2010.07.028.
  • Padfield, R., Tham, M. H., Costes, S., and Smith, L. (2016) Uneven development and the commercialisation of public utilities: A political ecology analysis of water reforms in Malaysia. Utilities Policy, 40, 152–161.
  • Piratla, K. R. and Goverdhanam, S. (2015) Decentralized Water Systems for Sustainable and Reliable Supply. Procedia Engineering, 118, 720–726.
  • Praveena, S. M., Lin, C. Y., Aris, A. Z., and Abdullah, M. H. (2010) Groundwater Assessment at Manukan Island, Sabah: Multidisplinary Approaches. Natural Resources Research, 19(4), 279–291. [online] http://dx.doi.org/10.1007/s11053-010-9124-y.
  • Rahmat, S. N. B., Ali, Z. M., and Musa, S. (2008) “Treatment of Rainwater Quality Using Sand Filter” in International Conference on Environment 2008 (ICENV 2008)., 1 –8. Rijsberman, F. R. (2006) Water scarcity: Fact or fiction? Agricultural Water Management, 80, 5–22.
  • Saimy, I. S. and Yusof, N. A. M. (2013) The Need for Better Water Policy and Governance in Malaysia. Procedia – Social and Behavioral Sciences, 81, 371 –375. [online] http://linkinghub.elsevier.com/retrieve/pii/S1877042813015127. Saleh, H. and Samsudin, A. R. (2013) Geo-Electrical Resistivity Characterization of Sedimentary Rocks in Dent Peninsular, Lahad Datu, Sabah. Borneo science, 32, 33–43.
  • Salleh, H. M. and Malek, N. A. (2012) Non-Revenue Water, Impact To The Services, Environment And Financial, [online] http://www.kettha.gov.my/kettha/portal/document/files/Pdf Innovasi Kettha/NRW Impact To The Service,Environment And Financial.pdf.
  • Sánchez, A. S., Cohim, E., and Kalid, R. A. (2015) A review on physicochemical and microbiological contamination of roof-harvested rainwater in urban areas. Sustainability of Water Quality and Ecology, 6, 119–137.
  • Sapkota, M., Arora, M., Malano, H., Moglia, M., Sharma, A., George, B., and Pamminger, F. (2015) An overview of hybrid water supply systems in the context of urban water management: Challenges and opportunities. Water (Switzerland), 7(1), 153–174. [online] https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84920875758&doi=10.3390%2Fw7010153&partnerID=40&md5=3d410c20acf9e654bcdcc bc19ef66cbc.
  • Sefie, A., Aris, A. Z., Shamsuddin, M. K. N., Tawnie, I., Suratman, S., Idris, A. N., Saadudin, S. B., and Wan Ahmad, W. K. (2015) Hydrogeochemistry of Groundwater from Different Aquifer in Lower Kelantan Basin, Kelantan, Malaysia. Procedia Environmental Sciences, 30, 151– 156. [online] http://www.sciencedirect.com/science/article/pii/S1 878029615006210.
  • Shaheed, R., Wan Mohtar, W. H. M., and El-Shafie, A. (2017) Ensuring water security by utilizing roof-harvested rainwater and lake water treated with a low-cost integrated adsorptionfiltration system. Water Science and Engineering, 10(2), 115–124. [online] http://dx.doi.org/10.1016/j.wse.2017.05.002.
  • Shirazi, S. M., Adham, M. I., Zardari, N. H., Ismail, Z., Imran, H. M. D., and Mangrio, M. A. (2015) Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia. Journal of Water and Land Development, 24(1–3), 11–19.
  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., and Kouimtzis, T. (2003) Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124. [online] http://www.sciencedirect.com/science/article/pii/S0043135403003981#BIB1 (Accessed September 19, 2017).
  • Sitzenfrei, R. and Rauch, W. (2014) Investigating transitions of centralized water infrastructure to decentralized solutions – An integrated approach. Procedia Engineering, 70, 1549–1557. [online] http://dx.doi.org/10.1016/j.proeng.2014.02.171. Suratman, S. (2004) 6.6. IWRM: Managing the Groundwater Component in Malaysia. Malaysia Water Forum, Kuala Lumpur, Malaysia, 19–22. [online] http://scholar.google.ca/scholar?start=100&q=iwrm&hl=en&as_sdt=1,5#22.
  • Suratman, S., Tawnie, I., and Sefei, A. (2011) Impact of landfills on groundwater in Selangor, Malaysia. ASM Science Journal, 5(2), 101 –108. Tan, J. (2012) The Pitfalls of Water Privatization: Failure and Reform in Malaysia. World Development, 40(12), 2552–2563. [online] http://dx.doi.org/10.1016/j.worlddev.2012.05.012.
  • Tankiewicz, M., Fenik, J., and Biziuk, M. (2010) Determination of organophosphorus and organonitrogen pesticides in water samples. TrAC – Trends in Analytical Chemistry, 29(9), 1050–1063. [online] http://dx.doi.org/10.1016/j.trac.2010.05.008.
  • Tarbuck, E. J. and Lutgens, F. K. (2015) Earth Science, England, Pearson.
  • Tubau, I., Vázquez-Suñé, E., Carrera, J., Valhondo, C., and Criollo, R. (2017) Quantification of groundwater recharge in urban environments. Science of The Total Environment, 592, 391– 402.
  • [online] http://linkinghub.elsevier.com/retrieve/pii/S0048969717306307 (Accessed September 13, 2017).
  • UNICEF and WHO (2017) Progress on Drinking Water, Sanitation and Hygiene, [online] http://apps.who.int/iris/bitstream/10665/258617/1/9789241512893 – eng.pdf%0Ahttp://www.wipo.int/amc/en/%0Ahttp://www.wipo.int/amc/en/.
  • Wang, J., Li, Y., Huang, J., Yan, T., and Sun, T. (2016) Growing water scarcity, food security and government responses in China. Global Food Security, 14, 1–9. [online] http://dx.doi.org/10.1016/j.gfs.2017.01.003.
  • Weber, B., Cornel, P., and Wagner, M. (2007) Semi-centralised supply and treatment systems for (fast growing) urban areas. Water Science and Technology, 55(1–2), 349–356. [online] http://wst.iwaponline.com/content/55/1 -2/349.abstract. WHO and UNICEF (2014) Progress on sanitation and drinking-water – 2014 update. Monitoring Programme for water supply and sanitation, 1 –78. [online] http://books.google.com/books?hl=en&lr=&id=irXCej15ax8C&oi=fnd&pg=PA56&dq=Dri nking+Water+and+Sanitation&ots=nB6oNXONjK&sig=ccf20ooYvn9F1SWv_miDYvNkE As. Wilderer, P. A. and Schreff, D. (2000) Decentralized and centralized wastewater management: A challenge for technology developers. Water Science and Technology, 41(1), 1 –8.
  • Xiao, S., Hu, S., Zhang, Y., Zhao, X., and Pan, W. (2018) Influence of sewage treatment plant effluent discharge into multipurpose river on its water quality: A quantitative health risk assessment of Cryptosporidium and Giardia. Environmental Pollution, 233, 797–805. [online] http://linkinghub.elsevier.com/retrieve/pii/S0269749117326817.
  • Yan, X., Ward, S., Butler, D., and Daly, B. (2017) Performance assessment and life cycle analysis of potable water production from harvested rainwater by a decentralized system. Journal of Cleaner Production, 172, 2167–2173.
  • Yaser, A. Z. and Safie, N. N. (2020) Green Engineering for Campus Sustainability, Springer Singapore.
  • Yaziz, M. I., Gunting, H., Sapari, N., and Ghazali, A. W. (1989) Variation in Rainwater From Roof Ctachments. Water Research, 23(6), 761 –765.
  • Zeng, Z., Liu, J., and Savenije, H. H. G. (2013) A simple approach to assess water scarcity integrating water quantity and quality. Ecological Indicators, 34, 441–449. [online] http://dx.doi.org/10.1016/j.ecolind.2013.06.012.
  • Zhou, Q., Deng, X., and Wu, F. (2017) Impacts of water scarcity on socio-economic development: A case study of Gaotai County, China. Physics and Chemistry of the Earth, Parts A/B/C. [online] http://linkinghub.elsevier.com/retrieve/pii/S1474706516302285.
  • Zin, T., SabaiAung, T., Saupin, S., Myint, T., KhinSN, D., Soe Aung, M., and S, S. B. (2015) Influencing Factors for Cholera and Diarrhoea: Water Sanitation and Hygiene in Impoverished Rural Villages of Beluran District, Sabah Malaysia. Malaysian Journal of Public Health Medicine, 15(1), 30–40

 

Download Full Paper Here (Right-Click and Save As)

ABOVE AND BELOW GROUND CARBON STOCK OF ACACIA MANGIUM STAND IN SABAH, MALAYSIA

Tan Chun Hung 1 , Normah Awang Besar 1* , Mohamadu Boyie Jalloh 2 , Maznah Mahali 1 ,
Nissanto Masri 3

1 Faculty of Science and Natural Resources, Universiti Malaysia Sabah Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

2 Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Jalan Sungai Batang, Mile 10, 90000, Sandakan, Sabah, Malaysia. 3 Sabah Forest Development Authority (SAFODA) Jalan Gaya, Wisma Perkasa, 88000 Kota Kinabalu, Sabah, Malaysia

*Corresponding author: normabr@ums.edu.my

ABSTRACT. This study aimed to estimate above and belowground carbon stock in Acacia mangium stands of different silvicultural systems (planted and regeneration) at the Bengkoka Forest Plantation, Pitas, Sabah, Malaysia. Aboveground biomass (AGB) and belowground biomass (BGB), and soil organic carbon content (SOC) at depth of 30 cm were quantified. A comparison was done between the two different silvicultural systems of Acacia mangium. A random systematic sampling method was used for conducting the forest inventory. Three circular plots of 0.25 ha were established in each of the Acacia mangium systems. Diameter at breast high (DBH) of every tree was measured using a diameter tape. Shrub layer and organic layer were measured at five randomly selected positions in each plot. Five litter fall traps (1m x 1m) were set up in the same position as the shrub and organic layer. Three holes (25 cm x 25 cm x 30 cm) were dug to get the roots for quantifying the roots biomass and soil for carbon content. The soil bulk density was determined by using undisturbed soil samples collected by using 51 mm diameter ring (100 cc.). The results showed that the total amount of carbon stock was 73.56 t ha-1 and 82.40 t ha-1 for planted and regeneration stands, respectively. The study revealed that the major contributor to total carbon stock for both planted and regeneration Acacia mangium stands was the aboveground biomass with mean values of 46.99 t ha-1 and 53.83 t ha-1 followed by belowground biomass with mean values of 26.57 t ha-1 and 28.57 t ha-1, respectively.

KEYWORDS: Acacia mangium, aboveground biomass, belowground biomass, carbon stock, soil organic carbon

 

REFERENCE

  • Acres, B.D., Burrough, P.A., Folland, C.J., Kalsi, M.S., Thomas, P. & Wright, P.S. 1975.The Soils of Sabah, Volume 1 – Classification and Description. England: Land Resource Devision, Ministry of Overseas Development. 135 pp.
  • Allison, L.E. 1965. Organic carbon. Methods of Soil Analysis, Part 2,
  • C. A. Black et al., Ed. Agronomy. 9:1367-1378. Am. Sot of Agron., Inc., Madison, WI.
  • Arun, J.N. Gitasree, D. Ashesh, K.D. 2009. Above ground standing biomass and carbon storage in village bamboos in North East India. Bio m a s s & Bioenergy . 2009. 33:1188-1196. Brown, S. 1997. Estimating Biomass and Biomass Change of Tropical Forest.FAO Forestry Paper -134. FAO, Rome. Brown, S., J. Sathaye, M. Cannell, and P. Kauppi. 1996. Management of forests for mitigation of greenhouse gas emissions.
  • In R. T. Watson, M.C. Zinyowera, and R.H. Moss (eds.), Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press,Cambridge and New York, Chapter 24 DIN.19683-2. Bestimmung der Partikelgrößenverteilung in mineralboden-Verfahren mittels Siebung und Sedimentation. FAO. 2011. State of the World’s Forests 2011 . Food and Agriculture Organization of the United Nations. Fearnside, P. M. 1996 Amazonian Deforestation And Global Warming: Carbon Stocks in Vegetation
    Replacing Brazil’s Amazon Forest. Forest EcolManag. 80:21 -34
  • Hall C.A.S., Uhlig J., 1991. Refining estimates of carbon released from tropical landuse change. Can J Forest Res. 21:118-13
  • Heriansyah, I., Miyakuni, K., Kato, T., Kiyono., Y. and Kanazawa, Y. 2007. GrowthCharacteristics and Biomass Accumulation of Acacia mangium Under Different Management Practices in Indonesia. Journal of Tropical Forest Science, 19(4): 226-235.
  • Herdiyanti, I. and Sulistyawati E. 2010. Carbon Stocks in Acacia mangium Willd. Stands of Different Ages.School of Life Sciences and Technology.InstitutTeknologi Bandung.
  • Heriyanto N. M., Imanudin R., Kato T. and Siregar C. A. 2005. Methodology Of Measurement And Analysis Of Biomass Carbon. The 3rd Workshop on the Demonstration Study on Carbon Fixing Forest Management in Indonesia. Indonesia. December, 2005.
  • Hertel, D., Moser, G., Culmsee, H., Erasmi, S., Homa, V., Schuldt, B. &Leuschner Ch. 2009. Below- and Above-Ground Biomass and Net Primary Production in a Paleotropical Natural Forest (Sulawesi, Indonesia) as Compared to Neotropical Forest. Journal of Forest Ecology and Management. 258:19041912
  • Houghton, R. A., Skole, D. L., Nobre, C. A., Hackler, J. L., Lawrence, K. T., Chomentowski, W. H. 2000. Annual Fluxes of Carbon From Deforestation and Regrowth in The Brazilian Amazon. Nature. 403:301 -304
  • Houghton, R. A. 1991. Tropical deforestation and atmospheric carbon dioxide. ClimateChange. 19:99- 118 INBAR. 2006. In partnership for a better world-strategy to the year 2015. Beijing, China: NBAR. Page 23
  • Landsberg, J.J., Linder, S., Mc Murtrie, R.E. 1995. Effects of Global Change on Managed Forest- A Strategic Plan for Research on Managed Forest Ecosystems in aGlobally Changing Environment. GCTE report no.4. IUFRO Occassional Paper no.1. GCTE and IUFRO. Page 1 -17. Lim, M. T. 1986. Biomass and Productivity of 4.5 Year-Old Acacia mangium in Sarawak. Pertanika 9 , Page 81 -87 Lim, M. T. 1988. Studies on Acacia mangium in Kemasul Forest, Malaysia. I. Biomass and Productivity. Journal of Tropical Ecology , 4(3): 293-302
  • Ogawa, M., Okimori, Y., and Takahashi, F. 2005. Carbon Sequestration By Carbonization of Biomass and Forestation: Three Case Studies. Mitigation and Adaptation Strategies for Global Change. 2006. 11:429-444
  • Potvin, C., Mancilla, L., Buchmann, N., Monteza, J., Moore, T., Murphy, M., Oelmann,M., SchererLorenzen, M., Turner, B.L., Wilcke, W., Zeugin, F., & Wolf, S. 2011 An ecosystem approach to biodiversity effects: Carbon pools in a tropical tree plantation. Forest Ecology and Management . 261: 16141624
  • Ravindranath, N.H., Joshi, N.V., Sukumar, R. and Saxena, A. 2006.Impact of climate change on forests in India. Current Science . 90(3):354-361.
  • Young, R. A, and Giese. R. 1990. A Guide to Monitoring Carbon Storage in Forestry and Agroforestry Projects. Forest Science, 2nd Edition USA: John Willey & Sons, Vol. 89:86-96
  • Zhao, L., Y. Sun, X. Zhang, X. Yang, and C. F. Drury. 2006. Soil organic carbon in clay and silt sized particles in Chinese mollisols: Relationship to the predicted capacity. Geoderma. 132-323

 

Download Full Paper Here (Right-Click and Save As)

PHYTOCHEMICAL AND ANTIMICROBIAL INVESTIGATION AND COMPARISON BETWEEN YOUNG AND MATURE Psidium guajava LEAVES EXTRACT

Tommy Nathaniel Nasiri, Suraya Abdul Sani, Rahmath Abdullah, Ainol Azifa Mohd Faik, Roslina Jawan,
and Mohd Khalizan Sabullah*

Biotechnology programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah

*Corresponding author : khalizan@ums.edu.my

ABSTRACT.Ethnomedicinal properties of Psidium guajava L. , or also known as guava leaves has been known since years ago. Nowadays, a lot of guava leaves-based products emerge in industries such as tea and cosmetic. The aims of this study are to examine and compare the variation in the phytochemical constituent as well as the antimicrobial efficacy of young and mature leaves extract. Phytochemical analysis shows the presence of phenol, tannin, terpene, saponin, and flavonoid in the mature leaves methanolic extract. A similar result was obtained in the young leaves extract but no saponin was detected. Total phenols content in young and mature leaves were determined at a total of 31.2 mg and 162 mg GA/g. Both leave extract was carried out to determine the antimicrobial properties by tested against two Grampositive bacteria (Staphylococcus aureus and Bacillus cereus) and one gram-negative bacteria (Salmonella enterica) through the disk-diffusion method by employing 40 µL of leaf extract solution per disk. Based on the observation, both young and mature extracts exhibited inhibitory activity (<6.0 mm) against the tested bacteria with different sensitivity. At the concentration of 10 mg/mL, mature leaves extract shows higher efficacy on S. enterica and B. cereus where the inhibitory zone was measured at 9.3 mm and 7.8 mm, respectively, compared to young leaves which is not sensitive to S. aureus but the inhibitory zone on B. cereus around 7.2 mm while S. aureus at 7.2 mm higher than mature leave extract. This can be concluded that the P. guajava mature leave displayed the best to applied as medicinal purposes as its high variety of phytochemical content and high efficacy as antimicrobial activity.

KEYWORDS: Psidium guajava L., extraction, phytochemical, antimicrobial, disk-diffusion method

 

REFERENCE

  • Abas, F., Nordin H. L., Israf, D. A., Khozirah, S. and Umi Kalsom Y. 2006. Antioxidant and Nitric Oxide Inhibition Activities of Selected Malay Traditional Vegetables. Food Chemistry 95(4): 566– 573.
  • Abdullah, M., Mamat, M. P., Yaacob, M. R., Radam, A. and Fui L. H. 2015. Estimate the Conservation Value of Biodiversity In National Heritage Site: A Case Of Forest Research Institute Malaysia. Procedia Environmental Sciences 30. Environmental Forensics 2015: 180–185.
  • Achakzai, A. K. K., Achakzai, P., Masood, A., Kayani, S. A. and Tareen, R. B. 2009. Response of Plant Parts and Age on the Distribution of Secondary Metabolites on Plants Found in Quetta. Pakistan Journal of Botany 41(5): 2129-2135.
  • Ahmad, N., Fazal, H., Ayaz, M., Abbasi, B. H., Mohammad, I. and Fazal, L. 2011. Dengue Fever Treatment with Carica Papaya Leaves Extracts. Asian Pacific Journal of Tropical Biomedicine 1(4): 330–333.
  • Alam, A., Ferdosh, S., Ghafoor, K., Hakim, A., Juraimi A. S., Khatib, A. and Sarker, Z. I. 2016. Clinacanthus Nutans: A Review of The Medicinal Uses, Pharmacology And Phytochemistry. Asian Pacific Journal of Tropical Medicine 9(4): 402–409.
  • Ali, A. M., Mackeen, M. M., El-Sharkawy, E. S., Hamid, J. A., Ismail, N. H., Ahmad, F. B. H. and Lajis, N. 1996. Antiviral and Cytotoxic Activities of Some Plants Used in Malaysian Indigenous Medicine. Pertanika Journal Of Tropical Agricultural Science 19: 129–136.
  • Auwal, M. S., Tijjani, A. N., Sadiq, M. A., Saka, S., Mairiga, I. A., Shuaibu, A., Adawaren, E. and Gulani, I. A. 2013. Antibacterial and Haematological Activity of Moringa Oleifera Aqueous Seed Extract In Wistar Albino Rats. Sokoto Journal Of Veterinary Sciences. 11(1): 28-37–37.
  • Balouiri, M., Moulay S., and Ibnsouda, S. K. 2016. Methods for In Vitro Evaluating Antimicrobial Activity: A Review. Journal of Pharmaceutical Analysis. 6(2): 71 –79.
  • Biswas, B., Rogers, K., Mclaughlin, F., Daniels, D. and Yadav, A. 2013. Antimicrobial Activities of Leaf Extracts Of Guava (Psidium Guajava L.) On Two Gram-Negative And Gram-Positive Bacteria. Research Article. International Journal Of Microbiology. 2013: ID 746165.
  • Chang, X., Yusheng L., Zhixiong L., Qiu, J., Xinbo Guo, X. Jianping Pan , J. and Abbasi, A. M. 2018 Impact Of Leaf Development Stages On Polyphenolics Profile And Antioxidant Activity In Clausena Lansium (Lour.) Skeels. Research Article. Biomed Research International. 2018: ID 7093691
  • Chen, X., Ma, Z. and Kitts, D. D. 2018. Effects of Processing Method and Age of Leaves on Phytochemical Profiles and Bioactivity of Coffee Leaves. Food Chemistry 249: 143 –153.
  • Chiari-Andréo, Galdorfini, B., Trovatti, E., Marto, J. et al. 2017. Guava: Phytochemical Composition of A Potential Source Of Antioxidants For Cosmetic And/Or Dermatological Applications. Brazilian Journal of Pharmaceutical Sciences. 53(2): https://doi.org/10.1590/s2175 – 97902017000216141
  • Hoffman, David. 2003. Medical Herbalism the Science & Practice of Herbal Medicine By David Hoffmann. 108-152. Inner Tradition International. Https://Www.Powells.Com/Book/MedicalHerbalism-The-Science-Practice-Of-Herbal-Medicine-9780892817498, Accessed March 21, 2019.
  • Hossain, M. A., Al-Raqmi, K. A. S., Al-Mijizy, Z. H., Weli, A. M. and Al-Riyami, Q. 2013. Study of Total Phenol, Flavonoids Contents and Phytochemical Screening Of Various Leaves Crude Extracts Of Locally Grown Thymus Vulgaris. Asian Pacific Journal Of Tropical Biomedicine 3(9): 705–710.
  • Inoue, Y., Akiko, S., Toshiko, H.,Hirose, K., Hamashima, H. and Shimada, J. 2004. The Antibacterial Effects of Terpene Alcohols on Staphylococcus aureus and Their Mode Of Action. Fems Microbiology Letters 237(2): 325–331.
  • Ito, Shin-Ichi, Takashi Ihara, Hideyuki Tamura, et al. 2007. Α-Tomatine, The Major Saponin In Tomato, Induces Programmed Cell Death Mediated By Reactive Oxygen Species In The Fungal Pathogen Fusarium Oxysporum. Febs Letters 581(17): 3217–3222.
  • Jaradat, Nidal, Fatima Hussen, And Anas Al Ali. 2015. Preliminary Phytochemical Screening, Quantitative Estimation Of Total Flavonoids, Total Phenols And Antioxidant Activity Of Ephedra Alata Decne. J Mater Environ Sci 6(6): 1771 –8.
  • Jarikasem, Siripen, Somyot Charuwichitratana, Sontana Siritantikorn, et al. 2013. Antiherpetic Effects Of Gynura Procumbens. Evidence-Based Complementary And Alternative Medicine : Ecam 2013. Https://Www.Ncbi.Nlm.Nih.Gov/Pmc/Articles/Pmc3789483/, Accessed March 6, 2019.
  • Kazan, Kemal, And Donald M. Gardiner. 2017. Targeting Pathogen Sterols: Defence And Counterdefence? Plos Pathogens 13(5). Https://Www.Ncbi.Nlm.Nih.Gov/Pmc/Articles/Pmc5436867/, Accessed March 21, 2019.
  • Khan, M. I., Ahhmed, A., Shin, J. H. et al. 2018. Green Tea Seed Isolated Saponins Exerts Antibacterial Effects Against Various Strains Of Gram Positive And Gram Negative Bacteria, A Comprehensive Study In Vitro And In Vivo. Research Article. Evidence-Based Complementary And Alternative Medicine. Https://Www.Hindawi.Com/Journals/Ecam/2018/3486106/, Accessed March 21, 2019.
  • Khoo, L. W., Siew A. K., Ming T. L., Tan, C. P., Shaari, K., Tham, C. L. and Abas, F. 2018. A Comprehensive Review On Phytochemistry And Pharmacological Activities Of Clinacanthus Nutans (Burm.F.) Lindau. Evidence-Based Complementary and Alternative Medicine: Ecam 2018: 9276260.
  • Maris, P. 1995. Modes Of Action Of Disinfectants. Revue Scientifique Et Technique (International Office Of Epizootics) 14(1): 47–55.
  • Mcsweeney, C. S, B Palmer, D. M Mcneill, And D. O Krause. 2001. Microbial Interactions With Tannins: Nutritional Consequences For Ruminants. Animal Feed Science And Technology 91(1) 83–93.
  • Metwally, A. M., A. A. Omar, F. M. Harraz, And S. M. El Sohafy. 2010. Phytochemical Investigation And Antimicrobial Activity of Psidium Guajava L. Leaves. Pharmacognosy Magazine 6(23): 212–218.
  • Mierziak, J., Kamil K., and Anna K. 2014. Flavonoids as Important Molecules of Plant Interactions with The Environment. Molecules (Basel, Switzerland) 19(10): 16240–16265.
  • Murukan, G. and Murugan, K. 2018. Comparison of Phenolic Acids and Antioxidant Activities of Young And Mature Leaves of Tectona grandis L F. Asian Journal of Pharmaceutical and Clinical Research. 60–66.
  • Najiah, M., Nadirah, M., Arief, Z., Zahrol, S., Tee, L.W., Ranzi, A.D., Amar, A.S., Laith, A.R., Mariam, M., Suzana, S. and Aida, R.J. 2011. Antibacterial Activity of Malaysian Edible Herbs Extracts on Fish Pathogenic Bacteria. Res J Med Plant 5(6): 772–778.
  • Nobossé, P., Fombang, E. N. and Mbofung, C. M. F. 2018. Effects of Age and Extraction Solvent on Phytochemical Content and Antioxidant Activity of Fresh Moringa Oleifera L. Leaves. Food Science & Nutrition 6(8): 2188–2198.
  • Salvamani, S., Gunasekaran, B., Shukor, M. Y., Shaharuddin, N. A., Sabullah, M. K. and Ahmad, S. A. 2016. Anti-Hmg-Coa Reductase, Antioxidant, And Anti-Inflammatory Activities Of Amaranthus Viridis Leaf Extract As A Potential Treatment For Hypercholesterolemia. Evidence-Based Complementary And Alternative Medicine 2016: ID 8090841.
  • Somboonwong, J., Kankaisre, M., Tantisira, B. and Tantisira, M. H. 2012. Wound Healing Activities of Different Extracts of Centella Asiatica in Incision and Burn Wound Models: An Experimental Animal Study. BMC Complementary and Alternative Medicine 12: 103.
  • Subenthiran, S., Choon, T. C., Cheong, K. C. 2013. Carica Papaya Leaves Juice Significantly Accelerates The Rate Of Increase In Platelet Count Among Patients With Dengue Fever And Dengue Haemorrhagic Fever. Research Article. Evidence-Based Complementary And Alternative Medicine. 2013: ID 616737
  • Tiwari, P., Kumar, B., Kaur, M., Kaur, G. and Kaur, H. 2011. Phytochemical Screening and Extraction: A Review. Internationale Pharmaceutica Sciencia. 1: 98 – 107.
  • Yoke Y. K., Tan, J. J., Teh, S. S.. 2013. Clinacanthus Nutans Extracts are Antioxidant with Antiproliferative Effect on Cultured Human Cancer Cell Lines. Research Article. Evidence Based Complementary And Alternative Medicine. 2013: ID 462751.
  • Zahra, A. A., Kadir, F. A., Mahmood, A. A., Al Hadi, A., Suzy, S., Sabri, S., Latif, I. I. and Ketuly, K. A. 2011. Acute Toxicity Study and Wound Healing Potential of Gynura Procumbens Leaf Extract in Rats. Journal of Medicinal Plants Research 5(12): 2551 –2558.

Download Full Paper Here (Right-Click and Save As)

CHARACTERIZATION OF OIL PALM LEAF PAPER WITH STARCH AS BINDER

Sabrina Soloi1*, Adib Afifi Mohammad1
1Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah,
88400 Kota Kinabalu, Sabah.
*Corresponding author: sabrinas@ums.edu.my

ABSTRACT. The utilization of agro-based fibre in replacing the wood fibre for pulp and paper making has been the subject of interest due to the abundance of this agro-based fibre as well as to reduce the usage of wood pulp. The presence of cellulose and hemicellulose in acceptable amount for pulp paper makes this agro based fibre an alternative in paper making industry. Previous study has shown that oil palm leaf fibre can be moulded into paper sheet without any binding agent, however, the physical properties ofthe paper were very low compare to other non-wood paper. In this study, the oil palm leaf paper was prepared using 5,8,11 and 14% sodium hydroxide (NaOH) with the addition of 5% starch as the binding agent. The incorporation of starch increases the smoothness of the paper. The tear strength of the paper increases with increasing concentration of sodium hydroxide. At higher concentration ofsodium hydroxide, the paper tear index falls within the range of commercial paper tear index. This study proves that the oil palm leaf has the potential to be developed in paper making industry.

KEYWORDS. Agro-based pulp; Oil palm leaf paper; Soda pulping; Binding agent; Surface morphology

REFERENCES

  • Aremu, M. O., Rafiu, M. A., & Adedeji, K. K. (2015). Pulp and Paper Production from Nigerian Pineapple Leaves and Corn Straw as Substitute to Wood Source. International Research
    Journal of Engineering and Technology.
  • Asim, M., Jawaid, M., Abdan, K., & Nasir, M. (2018). Effect of Alkali treatments on physical and Mechanical strength of Pineapple leaf fibres. IOP Conference Series: Materials Science
    and Engineering, 290(1). https://doi.org/10.1088/1757-899X/290/1/012030
  • Farsheh, A. T., Firouzabadi, M. D., & Mahdavi, S. (2011). Properties of kenaf(hibiscus cannabinus L.) bast fibre reinforced bagasse soda pulp in comparison to long fiber. World Applied
    Sciences Journal, 14(6), 906–909.
  • Fiserova, M., Gigac, J. (2011). Comparison of hardwood kraft pulp fibre characteristics and tensile strength. Cellulose Chemicstry and Technology, 45(9–10), 627–631.
  • Flory., A. ., Requesens, D. V., Dvaiah, S. P., Teoh, K. T., Mansfield, S. D., & Hood, E. E. (2013). Development of green binder for paper products. BMC Biotechnology, 13(28). Retrieved from http://www.lignocellulose.ir/ojs/index.php/lignocellulose/article/view/66
  • Hao, E. K. Z. (2017). The Effect of Cooking Time in Paper Made from Oil Palm Leaves. Universiti Malaysia Sabah.
  • Hedjazi, S., Kordsachia, O., Patt, R., Latibari, A. J., & Tschirner, U. (2009). Alkaline sulfite– anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps. Industrial Crops and Products, 29(1), 27–36. https://doi.org/10.1016/j.indcrop.2008.03.013
  • Khristova, P., Kordsachia, O., Patt, R., Karar, I., & Khider, T. (2006). Environmentally friendly pulping and bleaching of bagasse. Industrial Crops and Products, 23(2), 131 –139. https://doi.org/10.1016/j.indcrop.2005.05.002
  • Laftah, W. A., & Abdul Rahaman, W. A. W. (2015). Chemical pulping of waste pineapple leaves fiber for kraft paper production. Journal of Materials Research and Technology, 4(3), 254– 261. https://doi.org/10.1016/j.jmrt.2014.12.006
  • Liu, Y., Hu, T., Wu, Z., Zeng, G., Huang, D., Shen, Y., … He, Y. (2014). Study on biodegradation process of lignin by FTIR and DSC. Environmental Science and Pollution Research,
    21(24), 14004–14013. https://doi.org/10.1007/s11356-014-3342-5 McDonough, T. (1992). The chemistry of organosolv delignification. IPST Technical Paper Series.
  • Mohd Kassim, A. S., Aripin, A. M., Ishak, N., Zainulabidin, M. H., & Abang Zaidel, D. N. F. (2016). Oil palm leaf fibre and its suitability for paper-based products. ARPN Journal of
    Engineering and Applied Sciences, 11(11), 7364–7369.
  • Rezende, C., de Lima, M., Maziero, P., deAzevedo, E., Garcia, W., & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels,
    4(1), 54. https://doi.org/10.1186/1754-6834-4-54 Rodríguez, A., Serrano, L., Moral, A., & Jiménez, L. (2008). Pulping of rice straw with high-boiling point organosolv solvents. Biochemical Engineering Journal, 42(3), 243–247. https://doi.org/10.1016/j.bej.2008.07.001
  • Rodríguez, Alejandro, Serrano, L., Moral, A., Pérez, A., & Jiménez, L. (2008). Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches. Bioresource Technology,99(6), 1743–1749. https://doi.org/10.1016/j.biortech.2007.03.050
  • Rowell, R. M., Han, J. S., & Rowell, J. S. (2000). Characterization and Factors Effecting Fiber Properties. Natural Polymers an Agrofibers Composites, 115–134.
  • Saad, M. B. W., Oliveira, L. R. M., Cândido, R. G., Quintana, G., Rocha, G. J. M., & Gonçalves, A. R. (2008). Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping. Enzyme and Microbial Technology, 43(2), 220–225. https://doi.org/10.1016/j.enzmictec.2008.03.006
  • Sahin, H. T. (2003). Base-catalyzed organosolv pulping of jute. Journal of Chemical Technology & Biotechnology, 78(12), 1267–1273. https://doi.org/10.1002/jctb.931
  • Soloi, S., & Hao, E. K. Z. (2019). The Potential of Oil Palm Leaf Fibre in Paper-making Industry The Potential of Oil Palm Leaf Fibre in Paper-making Industry. https://doi.org/10.1088/1742-6596/1358/1/012005
  • Sreekala, M. ., Kumaran, M. ., Joseph, S., & Jacob, M. (2000). Oil palm fiber reinforced phenol formaldehyde composites: Influence of fiber surface modifications on mechanical properties. Applied Composite Materials, 7(5–6), 295–329.
  • Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products, 19(3), 245–254. https://doi.org/10.1016/j.indcrop.2003.10.006
  • Vu, T. H. M., Pakkanen, H., & Alén, R. (2004). Delignification of bamboo (Bambusa procera acher) Part 1. Kraft pulping and the subsequent oxygen delignification to pulp with a low kappa number. Industrial Crops and Products, 19(1). https://doi.org/10.1016/j.indcrop.2003.07.001
  • Wanrosli, W. D., Zainuddin, Z., Law, K. N., & Asro, R. (2007). Pulp from oil palm fronds by chemical processes. Industrial Crops and Products, 25(1), 89–94. https://doi.org/10.1016/j.indcrop.2006.07.005
  • Yamauchi, T., & Tanaka, A. (2002). Tearing test for paper using a tensile tester. Journal of WoodScience, 48(April 1995), 532–535. https://doi.org/10.1007/BF00766652

Download Full Paper Here (Right-Click and Save As)

CHARACTERIZATION OF OIL PALM LEAF PAPER WITH STARCH AS BINDER

Sabrina Soloi1*, Adib Afifi Mohammad1
1Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah,
88400 Kota Kinabalu, Sabah.
*Corresponding author: sabrinas@ums.edu.my

ABSTRACT. The utilization of agro-based fibre in replacing the wood fibre for pulp and paper making has been the subject of interest due to the abundance of this agro-based fibre as well as to reduce the usage of wood pulp. The presence of cellulose and hemicellulose in acceptable amount for pulp paper makes this agro based fibre an alternative in paper making industry. Previous study has shown that oil palm leaf fibre can be moulded into paper sheet without any binding agent, however, the physical properties ofthe paper were very low compare to other non-wood paper. In this study, the oil palm leaf paper was prepared using 5,8,11 and 14% sodium hydroxide (NaOH) with the addition of 5% starch as the binding agent. The incorporation of starch increases the smoothness of the paper. The tear strength of the paper increases with increasing concentration of sodium hydroxide. At higher concentration ofsodium hydroxide, the paper tear index falls within the range of commercial paper tear index. This study proves that the oil palm leaf has the potential to be developed in paper making industry.

KEYWORDS. Agro-based pulp; Oil palm leaf paper; Soda pulping; Binding agent; Surface morphology

REFERENCES

Aremu, M. O., Rafiu, M. A., & Adedeji, K. K. (2015). Pulp and Paper Production from Nigerian Pineapple Leaves and Corn Straw as Substitute to Wood Source. International Research
Journal of Engineering and Technology.

Asim, M., Jawaid, M., Abdan, K., & Nasir, M. (2018). Effect of Alkali treatments on physical and Mechanical strength of Pineapple leaf fibres. IOP Conference Series: Materials Science
and Engineering, 290(1). https://doi.org/10.1088/1757-899X/290/1/012030

Farsheh, A. T., Firouzabadi, M. D., & Mahdavi, S. (2011). Properties of kenaf(hibiscus cannabinus L.) bast fibre reinforced bagasse soda pulp in comparison to long fiber. World Applied
Sciences Journal, 14(6), 906–909.

Fiserova, M., Gigac, J. (2011). Comparison of hardwood kraft pulp fibre characteristics and tensile strength. Cellulose Chemicstry and Technology, 45(9–10), 627–631.

Flory., A. ., Requesens, D. V., Dvaiah, S. P., Teoh, K. T., Mansfield, S. D., & Hood, E. E. (2013). Development of green binder for paper products. BMC Biotechnology, 13(28). Retrieved from http://www.lignocellulose.ir/ojs/index.php/lignocellulose/article/view/66

Hao, E. K. Z. (2017). The Effect of Cooking Time in Paper Made from Oil Palm Leaves. Universiti Malaysia Sabah.

Hedjazi, S., Kordsachia, O., Patt, R., Latibari, A. J., & Tschirner, U. (2009). Alkaline sulfite– anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps. Industrial Crops and Products, 29(1), 27–36. https://doi.org/10.1016/j.indcrop.2008.03.013

Khristova, P., Kordsachia, O., Patt, R., Karar, I., & Khider, T. (2006). Environmentally friendly pulping and bleaching of bagasse. Industrial Crops and Products, 23(2), 131 –139. https://doi.org/10.1016/j.indcrop.2005.05.002

Laftah, W. A., & Abdul Rahaman, W. A. W. (2015). Chemical pulping of waste pineapple leaves fiber for kraft paper production. Journal of Materials Research and Technology, 4(3), 254– 261. https://doi.org/10.1016/j.jmrt.2014.12.006

Liu, Y., Hu, T., Wu, Z., Zeng, G., Huang, D., Shen, Y., … He, Y. (2014). Study on biodegradation process of lignin by FTIR and DSC. Environmental Science and Pollution Research,
21(24), 14004–14013. https://doi.org/10.1007/s11356-014-3342-5 McDonough, T. (1992). The chemistry of organosolv delignification. IPST Technical Paper Series.

Mohd Kassim, A. S., Aripin, A. M., Ishak, N., Zainulabidin, M. H., & Abang Zaidel, D. N. F. (2016). Oil palm leaf fibre and its suitability for paper-based products. ARPN Journal of
Engineering and Applied Sciences, 11(11), 7364–7369.

Rezende, C., de Lima, M., Maziero, P., deAzevedo, E., Garcia, W., & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels4(1), 54. https://doi.org/10.1186/1754-6834-4-54

Rodríguez, A., Serrano, L., Moral, A., & Jiménez, L. (2008). Pulping of rice straw with high-boiling point organosolv solvents. Biochemical Engineering Journal, 42(3), 243–247. https://doi.org/10.1016/j.bej.2008.07.001

Rodríguez, Alejandro, Serrano, L., Moral, A., Pérez, A., & Jiménez, L. (2008). Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches. Bioresource Technology,
99(6), 1743–1749. https://doi.org/10.1016/j.biortech.2007.03.050

Rowell, R. M., Han, J. S., & Rowell, J. S. (2000). Characterization and Factors Effecting Fiber Properties. Natural Polymers an Agrofibers Composites, 115–134.

Saad, M. B. W., Oliveira, L. R. M., Cândido, R. G., Quintana, G., Rocha, G. J. M., & Gonçalves, A. R. (2008). Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping. Enzyme and Microbial Technology, 43(2), 220–225. https://doi.org/10.1016/j.enzmictec.2008.03.006

Sahin, H. T. (2003). Base-catalyzed organosolv pulping of jute. Journal of Chemical Technology & Biotechnology, 78(12), 1267–1273. https://doi.org/10.1002/jctb.931

Soloi, S., & Hao, E. K. Z. (2019). The Potential of Oil Palm Leaf Fibre in Paper-making Industry The Potential of Oil Palm Leaf Fibre in Paper-making Industry. https://doi.org/10.1088/1742-6596/1358/1/012005

Sreekala, M. ., Kumaran, M. ., Joseph, S., & Jacob, M. (2000). Oil palm fiber reinforced phenol formaldehyde composites: Influence of fiber surface modifications on mechanical properties. Applied Composite Materials, 7(5–6), 295–329.

Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products, 19(3), 245–254. https://doi.org/10.1016/j.indcrop.2003.10.006

Vu, T. H. M., Pakkanen, H., & Alén, R. (2004). Delignification of bamboo (Bambusa procera acher) Part 1. Kraft pulping and the subsequent oxygen delignification to pulp with a low kappa number. Industrial Crops and Products, 19(1). https://doi.org/10.1016/j.indcrop.2003.07.001

Wanrosli, W. D., Zainuddin, Z., Law, K. N., & Asro, R. (2007). Pulp from oil palm fronds by chemical processes. Industrial Crops and Products, 25(1), 89–94. https://doi.org/10.1016/j.indcrop.2006.07.005

Yamauchi, T., & Tanaka, A. (2002). Tearing test for paper using a tensile tester. Journal of Wood Science, 48(April 1995), 532–535. https://doi.org/10.1007/BF00766652

Download Full Paper Here (Right-Click and Save As)