Ahmad Fauzi Othman1, Mohd Fadzil Arshad2, Zakiah Ahmad2, Amran Shafie1, Junaiza Ahmad Zaki1, Nur Hannani Abdul Latif1, Mohd Azrul Naim3*
1Faculty of Applied Science, Universiti Teknologi Mara, Bandar Jengka, 26400 Bandar Tun Razak, Pahang
2College of Civil Engineering, Universiti Teknologi Mara, 40450 Shah Alam, Selangor
3Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, 25200, Kuantan, Pahang

ABSTRACT. Oil palm trunk is one of the promising biomass materials due to the high volume of unused waste components and increasing worldwide demand to replace conventional wood. This study investigated the feasibility of using ethanol as a drying agent for oil palm trunks with different dimensional surfaces (radial, tangential and longitudinal sections). The radial shrinkage percentage for the outer layer is 1.50% (untreated) and 1.22 % (treated). In comparison, the inner layer of the untreated sample was recorded at 2.54 % shrinkage and the treated sample was at 2.29%. The tangential sample for the inner untreated sample shows 2.60% and the treated sample shows 2.40%. The same pattern of shrinkage was shown for the tangential section on the outer layer as 1.81% and 1.10% of the untreated and treated sample respectively. For the longitudinal surface, the inner layer section of the untreated sample was recorded at 0.39% compared to the treated sample at 0.25%. In comparison, a longitudinal surface section for the outer layer of the untreated sample was recorded at 0.38%, while the treated sample was recorded at 0.33% shrinkage percentage. The effect of ethanol treatment on the shrinkage is significantly different between different sections (P-value: 0.01) and between the outer and inner layers (P-value: 0.02). The result suggested that ethanol treatment could be an option for the oil palm trunk drying process. Dried oil palm trunks can be utilized as a potential substitution for biomass and wood to produce various products.

 Oil palm trunk (OPT), shrinkage percentage, moisture content, ethanol


  • Ab Latib, H., Ratnasingam, J., Mariapan, M., Othman, K., Amir, M., Choon Liat, L., Lee, Y. Y., Ioras, F., Farrokhpayam, S. R., & Jegatheswaran, N. (2022). Malaysian Timber Industry Policy: Achievements, Challenges, and Lessons Learned. BioResources, 17(1), 299–315.
  • Abdul, H. P. S., Jawaid, M., Hassan, A., Paridah, M. T., & Zaido, A. (2012). Oil Palm Biomass Fibres and Recent Advancement in Oil Palm Biomass Fibres Based Hybrid Biocomposites. Composites and Their Applications, August. https://doi.org/10.5772/48235
  • Abdul Hamid, Z. A., Arai, T., Sitti Fatimah, M. R., Kosugi, A., Sulaiman, O., Hashim, R., Nirasawa, S., Ryohei, T., Lokesh, B. E., Sudesh, K., Murata, Y., Saito, M., & Mori, Y. (2015). Analysis of Free Sugar and Starch in Oil Palm Trunks ( Elaeis Guineensis Jacq. ) from Various Cultivars as a Feedstock for Bioethanol Production . International Journal of Green Energy, 150218144136008. https://doi.org/10.1080/15435075.2014.910786
  • Amira, N., Armir, Z., Zakaria, S., Begum, R. A., Chamhuri, N., Ariff, N. M., Harun, J., Laila, N., Talib, M., & Kadir, M. A. (2020). Malaysia wood industries. BioResources, 15(2), 2971–2993.
  • Anis, M., Noor, A. S., Ismail, S., Halimah, M., & Astimar, A. A. (2016). Recovery of oil palm lumber. Journal Palm Oil Developments, 64, 7–10.
  • Corrêa, J. L. G., Braga, A. M. P., Hochheim, M., & Silva, M. A. (2012). The Influence of Ethanol on the Convective Drying of Unripe, Ripe, and Overripe Bananas. Drying Technology, 30(8), 817–826. https://doi.org/10.1080/07373937.2012.667469
  • da Cunha, R. M. C., Brandão, S. C. R., de Medeiros, R. A. B., da Silva Júnior, E. V., Fernandes da Silva, J. H., & Azoubel, P. M. (2020). Effect of ethanol pretreatment on melon convective drying. Food Chemistry, 333, 127502. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.127502
  • de Freitas, L. D. C., Brandão, S. C. R., Fernandes da Silva, J. H., Sá da Rocha, O. R., & Azoubel, P. M. (2021). Effect of Ethanol and Ultrasound Pretreatments on Pineapple Convective Drying. Food Technology and Biotechnology, 59(2), 209–215. https://doi.org/10.17113/ftb.
  • Eom, I. Y., Yu, J. H., Jung, C. D., & Hong, K. S. (2015). Efficient ethanol production from dried oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Biotechnology for Biofuels, 8(1). https://doi.org/10.1186/s13068-015-0263-6
  • Erwinsyah, Bues, C. T., & Richter, C. (2007). Thermal Insulation Material Made from OPEFB Fibres.pdf. Biotropia, 14(1), 32–50. chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://journal.biotrop.org/index.php/biotropia/article/download/23/451
  • Funebo, T., Ahrné, L., Prothon, F., Kidman, S., Langton, M., & Skjöldebrand, C. (2002). Microwave and convective dehydration of ethanol treated and frozen apple – physical properties and drying kinetics. International Journal of Food Science \& Technology, 37(6), 603–614. https://doi.org/https://doi.org/10.1046/j.1365-2621.2002.00592.x
  • Hamzah, M. H., Bowra, S., & Cox, P. (2020). Effects of Ethanol Concentration on Organosolv Lignin Precipitation and Aggregation from Miscanthus x giganteus. Processes, 8(7). https://doi.org/10.3390/pr8070845
  • Hashim, R., Aidawati, W. N., Nadhari, W., Sulaiman, O., Sato, M., Hiziroglu, S., Kawamura, F., Sugimoto, T., Guan, T., & Tanaka, R. (2012). Palm binderless particleboard. In BioResources (Vol. 7, Issue 1).
  • Hochegger, M., Cottyn-Boitte, B., Cézard, L., Schober, S., & Mittelbach, M. (2019). Influence of Ethanol Organosolv Pulping Conditions on Physicochemical Lignin Properties of European Larch. International Journal of Chemical Engineering, 2019. https://doi.org/10.1155/2019/1734507
  • Kaniapan, S., Hassan, S., Ya, H., Nesan, K. P., & Azeem, M. (2021). The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: A review. Sustainability (Switzerland), 13(6). https://doi.org/10.3390/su13063110
  • Lai, M., & Lü, B. (2012). 3.04 – Tissue Preparation for Microscopy and Histology (J. B. T.-C. S. and S. P. Pawliszyn (Ed.); pp. 53–93). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-381373-2.00070-3
  • Lim, S., & Gan, K. (2005). Characteristics and utilisation of oil palm stem. Timber Technology Bulletin, 35, 1–12.
  • Mhd Ramle, S. F. (2021). Chemical Composition of Parenchyma and Vascular Bundle from Elaeis guineensis. In H. Kamyab (Ed.), Elaeis guineensis (p. 13). IntechOpen. https://doi.org/10.5772/intechopen.98421
  • Mhd Ramle, S. F., Sulaiman, O., Hashim, R., Arai, T., Kosugi, A., Abe, H., Murata, Y., & Mori, Y. (2012). Characterization of Parenchyma and Vascular Bundle of Oil Palm Trunk as Function of Storage Time. Lignocellulose, 1(1), 33–44.
  • Migolet, P., Goïta, K., Ngomanda, A., & Biyogo, A. P. M. (2020). Estimation of aboveground oil palm biomass in a mature plantation in the Congo Basin. Forests, 11(5), 1–23. https://doi.org/10.3390/F11050544
  • Murphy, D. J., Goggin, K., & Paterson, R. R. M. (2021). Oil palm in the 2020s and beyond: challenges and solutions. CABI Agriculture and Bioscience, 2(1), 1–22. https://doi.org/10.1186/s43170-021-00058-3
  • Pang, S. (2006). Using methanol and ethanol vapours as drying media for producing bright colour wood in drying of radiata pine.
  • Rais, M. R., Bakar, E. S., Ahaari, Z., Lee, S. H., Soltani, M., Ramli, F., & Bawon, P. (2021). Drying performance, as well as physical and flexural properties of oil palm wood dried via the super-fast drying method. BioResources, 16(1), 1674–1685. https://bioresources.cnr.ncsu.edu/resources/drying-performance-as-well-as-physical-and-flexural-properties-of-oil-palm-wood-dried-via-the-super-fast-drying-method/
  • Rosli, R. A., Harumain, Z. A. S., Zulkalam, M. F., Hamid, A. A. A., Sharif, M. F., Mohamad, M. A. N., Noh, A. L., & Shahari, R. (2021). Phytoremediation of Arsenic in Mine Wastes by Acacia mangium. Remediation Journal, 31(3), 49–59.
  • Santos, P. H. S., & Silva, M. A. (2009). Kin Silva, M. G., Celeghini, R. M. S., & Silva, M. A. (2018). Effect of ethanol on the drying characteristics and on the coumarin yield of dried guaco leaves (Mikania laevigata schultz BIP. Ex Baker). Brazilian Journal of Chemical Engineering, 35(3), 1095–1104. https://doi.org/10.1590/0104-6632.20180353s20160481
  • Sulaiman, O., Salim, N., Nordin, N. A., Hashim, R., Ibrahim, M., & Sato, M. (2012). The potential of oil palm trunk biomass as an alternative source for compressed wood. BioResources, 7(2), 2688–2706. https://doi.org/10.15376/biores.7.2.2688-2706
  • Tan, K. P., Kanniah, K. D., & Cracknell, A. P. (2014). On the upstream inputs into the MODIS primary productivity products using biometric data from oil palm plantations. International Journal of Remote Sensing, 35(6), 2215–2246. https://doi.org/10.1080/01431161.2014.889865
  • Teoh, C. H. (2002). The palm oil industry in Malaysia: From seed to frying pan. In WWF (Issue November). http://www.senternovem.nl/mmfiles/WWF_palm_oil_industry_Malaysia_tcm24-195179.pdf
  • Wong, T., Lim, S., Gan, K., & Chung, R. (Eds.). (2019). A Dictionary of Malaysian Timbers: 3rd Edition (3rd Editio). Forest Research Institute Malaysia.

Download Full Paper Here (Right-Click and Save As)


This study was funded by “Dana Dalam Negeri (DDN) Lestari Khas Fasa 2 with Grant Number: 600-TNCPI 5/3/DDN(06)(009/2021).