Volume 43 (Issue 1, March 2022)

VEGETABLE WASTE COMPOSTING: A CASE STUDY IN KUNDASANG, SABAH

– N. Murshid1, A.Z. Yaser1*, M. Rajin1, S. Saalah1, J. Lamaming1, M. Taliban2

 

FOOD WASTE-DRY LEAVES COMPOSTING: MIXTURE FORMULATION, TURNING FREQUENCY AND KINETIC ANALYSIS

– Mohd Al Mussa Ugak, Nur Aqeela Syuhadah Aji, Abu Zahrim Yaser*, Junidah Lamaming, Mariani Rajin and Sariah Saalah

 

THE ROLE OF GOVERNMENT INSTITUTIONS IN MANAGING THE ENVIRONMENT IN NIGERIA: POLICY AND GOVERNANCE REVIEW

– Ahmed Abubakar*1, Mohd Yusoff Ishak2, Khadijah Musa Yaro3, Aminu Suleiman Zangina4

 

PRESERVATION COATING EFFECT OF ACID-SOLUBLE CHITOSAN ON THE SHELF LIFE OF BANANA IN SABAH

– Flornica A. Ahing. and N. Wid.

 

NATURAL RESOURCE-BASED RECREATIONAL ACTIVITIES DURING COVID-19 PANDEMIC: A LOCAL COMMUNITIES PERSPECTIVE IN SABAH, MALAYSIA

– Walter J. Lintangah1*, Vilaretti Atin1 and Khalid Nurul Izzah Izati1

 

Download Full Volume Here

VEGETABLE WASTE COMPOSTING: A CASE STUDY IN KUNDASANG, SABAH

N. Murshid1, A.Z. Yaser1*, M. Rajin1, S. Saalah1, J. Lamaming1, M. Taliban2

1 Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah
2 Persatuan Pemborong dan Peruncit Sayur Bumiputera Kundasang, Sabah
Corresponding author : Abu Zahrim Yaser , Email : zahrim@ums.edu.my
noorafizahmurshid@gmail.com (N. Murshid)

Received 13th November 2021; accepted 22nd November2021
Available online 20th May 2022

ABSTRACT. Composting is considered agronomically, ecologically, and practically beneficial, with the end product being an organic fertilizer or soil conditioner rich in nutrients for the soil. This study aims to investigate the effects of adding chicken manure (CM) to vegetable waste (VW) and rice husk (RH) composting. This is a pioneering study on Kundasang composting, as well as addressing the vegetable waste problem in the community. The composting process was studied for 20 days in a 37-L laboratory composter reactor box with passive aeration. Four mixtures were investigated, each with a VW: RH (1:2) ratio and a different additive of CM (0%, 1%, 2.5% and 5%). The composting process’s performance shows that Mix-3 (2.5 % CM) is ideal compared to other mixtures, with the highest temperature achieved at 41ºC as early as day 1, resulting in a 28.12% organic matter (OM) loss. The OM loss value results show that Mix-3 (28.12%) > Mix-2 (26.14%) > Mix-1 (16.55%) >Mix-4 (13.33%). The maximum temperature reached was 41ºC, and the Mix-3(41.3ºC)>Mix-1(41.1ºC)>Mix-2(41.0ºC)>Mix-4(40.7ºC) and decreasing near to ambient. The reduction percentage shows Mix-3 (13.92%) > Mix-2 (13.45%) > Mix-4 (9.24%) > Mix-1 (8.93%). Thus, with the optimum addition of chicken manure, the degradation is reflected in the high moisture content reduction rate. In conclusion, using CM as an additive has a significant impact on composting VW.

REFERENCES

  • Abubakari, A.-H., Banful, B. K. B., & Atuah, L. 2019. Standardizing the Quality of Composts Using Stability and Maturity Indices: The Use of Sawdust and Rice Husks as Compost Feed Stocks. American Journal of Plant Sciences. 10(12):2134–2150.
  • Abu-Zahra, T. R., Ta Any, R. A., & Arabiyyat, A. R. 2014. Changes in Compost Physical and Chemical Properties during Aerobic Decomposition. International Journal Current Microbiology Applied Science. 3(10).
  • Ahmad, A., Khan, N., Giri, B. S., Chowdhary, P., & Chaturvedi, P. 2020. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies. Bioresource Technology. 306.
  • N. Murshid, A.Z. Yaser, M. Rajin, S. Saalah, J. Lamaming, M. Taliban Ajmal, M., Aiping, S., Awais, M., Ullah, M. S., Saeed, R., Uddin, S., Ahmad, I., Zhou, B., & Zihao, X. 2020. Optimization of pilot-scale in-vessel composting process for various agricultural wastes on elevated temperature by using Taguchi technique and compost quality assessment. Process Safety and Environmental Protection. 140:34–45.
  • Awasthi, S. K., Duan, Y., Liu, T., Zhang, Z., Pandey, A., Varjani, S., Awasthi, M. K., & Taherzadeh, M. J. 2020. Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting? Journal of Hazardous Materials. 124593.
  • Barthod, J., Rumpel, C., & Dignac, M.F. 2018. Composting with additives to improve organic amendments. A review Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development. 38(2):1–23.
  • Bernal, M. P., Alburquerque, J. A., & Moral, R. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology. 100(22): 5444–5453.
  • Bernal, M. P., Sommer, S. G., Chadwick, D., Qing, C., Guoxue, L., & Michel, F. C. 2017. Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits. In Advances in Agronomy. 144:143–233.
  • Bhatia, A., Ali, M., & Sahoo, J. 2012. Microbial diversity during rotary drum and windrow pile composting. Journal Basic Microbiol. 52(52), 5–15.
  • Bhatia, A., Ali, M., Sahoo, J., Madan, S., Pathania, R., Ahmed, N., & Kazmi, A. A. 2012. Microbial diversity during Rotary Drum and Windrow Pile composting. Journal of Basic Microbiology. 52(1): 5–15.
  • Bian, B., Hu, X., Zhang, S., Lv, C., Yang, Z., Yang, W., & Zhang, L. 2019. Pilot-scale composting of typical multiple agricultural wastes: Parameter optimization and mechanisms. Bioresource Technology. 287,121482.
  • Chan, M. T., Selvam, A., & Wong, J. W. C. 2016. Reducing nitrogen loss and salinity during “struvite” food waste composting by zeolite amendment. Bioresource Technology. 200:838–844.
  • Chang, R., Li, Y., Chen, Q., Gong, X., & Qi, Z. 2020. Effects of carbon-based additive and ventilation rate on nitrogen loss and microbial community during chicken manure composting. PLoS ONE. 15(9).
  • Cheng, H., & Hu, Y. 2010. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresource Technology. 101(11):3816–3824.
  • Chia, W. Y., Chew, K. W., Le, C. F., Lam, S. S., Chee, C. S. C., Ooi, M. S. L., & Show, P. L. 2020. Sustainable utilization of biowaste compost for renewable energy and soil amendments. Environmental Pollution. 267(115662).
  • Dayananda S, H., & Shilpa S, B. 2020. Vertical In-Vessel Composter for Stabilization of Market Vegetable Waste. International Journal of Engineering and Advanced Technology (IJEAT).
  • de Bertoldi, M., Vallini, G., & Pera, A. 1983. The Biology of Composting: A Review. In Waste Management & Research. 1(2): 157–176).
    Department of Statistics Malaysia Official Portal. (2020). Vegetable Waste Composting: A Case Study in Kundasang, Sabah
  • Du, X., Tao, Y., Li, H., Liu, Y., & Feng, K. 2019. Synergistic methane production from the anaerobic co-digestion of Spirulina platensis with food waste and sewage sludge at high solid concentrations. Renewable Energy. 142:55–61.
  • Eklind, Y., & Kirchmann, H. 2000. Composting and storage of organic household waste with different litter amendments. II: Nitrogen turnover and losses. Bioresource Technology. 74(2), 125–133.
  • Fernández-Gómez, M. J., Romero, E., & Nogales, R. 2010. Feasibility of vermicomposting for vegetable greenhouse waste recycling. Bioresource Technology. 101(24):9654–9660.
  • Gao, M., Li, B., Yu, A., Liang, F., Yang, L., & Sun, Y. 2010. The effect of aeration rate on forced-aeration composting of chicken manure and sawdust. Bioresource Technology. 101(6), 1899–1903.
  • García-Gómez, A., Bernal, M. P., & Roig, A. 2003. Carbon mineralisation and plant growth in soil amended with compost samples at different degrees of maturity. Waste Management and Research. 21(2), 161–171.
  • Ghinea, C., & Leahu, A. 2020. Monitoring of fruit and vegetable waste composting process: Relationship between microorganisms and physico-chemical parameters. Processes. 8(3):302.
  • Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., & Shen, Y. 2012. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technology. 112: 171–178.
  • Huang, G. F., Wu, Q. T., Wong, J. W. C., & Nagar, B. B. 2006. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresource Technology. 97(15): 1834–1842.
  • Hwang, H. Y., Kim, S. H., Kim, M. S., Park, S. J., & Lee, C. H. 2020. Co-composting of chicken manure with organic wastes: characterization of gases emissions and compost quality. Applied Biological Chemistry. 63(1).
  • Insam, H., & de Bertoldi, M. 2007. Chapter 3: Microbiology of the composting process. Waste Management Series. 8: 25–48.
  • Irvan, Husaini, T., Trisakti, B., Batubara, F., & Daimon, H. 2018. Composting of empty fruit bunches in the tower composter-effect of air intake holes. IOP Conference Series: Materials Science and Engineering. 309(1).
  • Ismayana, A., Siswi Indrasti, N., Maddu, A., & Fredy, A. 2012. Factors Of Initial C/N And Aeration Rate In Co-Composting Process Of Bagasse And Filter Cake. In Aris Fredy Jurnal Teknologi Indonesia Pertanian. 22: 3.
  • Jara-Samaniego, J., Pérez-Murcia, M. D., Bustamante, M. A., Paredes, C., Pérez-Espinosa, A., Gavilanes-Terán, I., López, M., Marhuenda-Egea, F. C., Brito, H., & Moral, R. 2017. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador. PLoS ONE. 12(7).
  • N. Murshid, A.Z. Yaser, M. Rajin, S. Saalah, J. Lamaming, M. Taliban Jeong, K. H., Kim, J. K., Ravindran, B., Lee, D. J., Wong, J. W. C., Selvam, A., Karthikeyan, O. P., & Kwag, J. H. 2017. Evaluation of pilot-scale in-vessel composting for Hanwoo manure management. Bioresource Technology. 245(Pt A): 201–206.
  • Kazamias, G., Roulia, M., Kapsimali, I., & Chassapis, K. 2017. Innovative biocatalytic production of soil substrate from green waste compost as a sustainable peat substitute. Journal of Environmental Management. 203(670–678).
  • Klamer, M., & Baath, E. 2006. Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiology Ecology. 27(1): 9–20.
  • Li, D., Chen, L., Liu, X., Mei, Z., Ren, H., Cao, Q., & Yan, Z. 2017. Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste. Bioresource Technology. 245:90–97.
  • Li, M. X., He, X. S., Tang, J., Li, X., Zhao, R., Tao, Y. Q., Wang, C., & Qiu, Z. P. 2021. Influence of moisture content on chicken manure stabilization during microbial agent-enhanced composting. Chemosphere. 264:128549.
  • Li, Y., Li, W., Liu, B., Wang, K., Su, C., & WuA, C. 2013. Ammonia emissions and biodegradation of organic carbon during sewage sludge composting with different extra carbon sources. Biodegradation International Biodeterior. 85: 62.
  • Liu, D., Zhang, R., Wu, H., Xu, D., Tang, Z., Yu, G., Xu, Z., & Shen, Q. 2011. Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. Bioresource Technology. 102(19): 9040–9049.
  • Liu, L., Wang, S., Guo, X., Zhao, T., & Zhang, B. 2018. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. Waste Management. 73(10).
  • Liu, X., Gao, X., Wang, W., Zheng, L., Zhou, Y., & Sun, Y. 2012. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable Energy. 44:463–468.
  • Luangwilai;, T., Sidhu;, H., & Nelson, M. 2018. Understanding effects of ambient humidity on self-heating of compost piles | Chemeca 2018. Chemeca 2018.
  • Malakahmad, A., Idrus, N. B., Abualqumboz, M. S., Yavari, S., & Kutty, S. R. M. 2017. In-vessel co-composting of yard waste and food waste: an approach for sustainable waste management in Cameron Highlands, Malaysia. International Journal of Recycling of Organic Waste in Agriculture. 6(2):149–157.
  • Mehta, C. M., Palni, U., Franke-Whittle, I. H., & Sharma, A. K. 2014. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management. 34(3), 607–622.
  • Nadia, N., Yaacob, F., Manaf, L. A., & Hanan, Z. 2019. Quantifying The Organic Waste Generated From The Fresh Market In Kundasang Town, Sabah. Journal of the Malaysian Institute of Planners. 17(2):112–122.
  • Plazzotta, S., Manzocco, L., & Nicoli, M. C. 2017. Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends in Food Science and Technology. 63:51–59. Vegetable Waste Composting: A Case Study in Kundasang, Sabah
  • Qasim, W., Moon, B. E., Okyere, F. G., Khan, F., Nafees, M., & Kim, H. T. 2019. Influence of aeration rate and reactor shape on the composting of poultry manure and sawdust. Journal of the Air and Waste Management Association. 69(5), 633–645.
  • Rajin, M., Yaser, A. Z., Saalah, S., Jagadeson, Y., & Duraim, M. A. 2019. The effect of enzyme addition on the anaerobic digestion of foodwaste. In Green Engineering for Campus Sustainability. 119–131.
  • Rawoteea, S. A., Mudhoo, A., & Kumar, S. 2017. Co-composting of vegetable wastes and carton: Effect of carton composition and parameter variations. Bioresource Technology. 227:171–178.
  • Reyes-Torres, M., Oviedo-Ocaña, E. R., Dominguez, I., Komilis, D., & Sánchez, A. 2018. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. In Waste Management. 77:486–499.
  • Rich, N., Bharti, A., & Kumar, S. 2018. Effect of bulking agents and cow dung as inoculant on vegetable waste compost quality. Bioresource Technology. 252, 83–90.
  • Saalah, S., Rajin, M., Yaser, A. Z., Azmi, N. A. S. A., & Mohammad, A. F. F. 2019. Foodwaste composting at faculty of engineering, Universiti Malaysia Sabah. In Green Engineering for Campus Sustainability. 173–191. Springer Singapore.
  • Shou, Z., Yuan, H., Shen, Y., Liang, J., Zhu, N., & Gu, L. 2017. Mitigating inhibition of undissociated volatile fatty acids (VFAs) for enhanced sludge-rice bran composting with ferric nitrate amendment. Bioresource Technology. 244: 672–678.
  • Sudharsan Varma, V., & Kalamdhad, A. S. 2014. Stability and microbial community analysis during rotary drum composting of vegetable waste. International Journal of Recycling of Organic Waste in Agriculture. 3(2).
  • Suhartini, S., Wijana, S., S Wardhani, N. W., & Muttaqin, S. 2020. Composting of chicken manure for biofertiliser production: a case study in Kidal Village, Malang Regency Composting of chicken manure for biofertiliser production: a case study in Kidal Village, Malang Regency. IOP Conference Series: Earth and Environmental Science. 524(012016).
  • Tang, D. Y. Y., Khoo, K. S., Chew, K. W., Tao, Y., Ho, S. H., & Show, P. L. 2020. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology. 304.
  • Tratsch, M. V. M., Ceretta, C. A., da Silva, L. S., Ferreira, P. A. A., & Brunetto, G. 2019. Composition and mineralization of organic compost derived from composting of fruit and vegetable waste. Revista Ceres. 66(4):307–315.
  • Tripetchkul, S., Pundee, K., Koonsrisuk, S., & Akeprathumchai, S. 2012. Co-composting of coir pith and cow manure: initial C/N ratio vs physico-chemical changes. International Journal Of Recycling Of Organic Waste In Agriculture. 1(15): 1-8.
  • Troy, S. M., Nolan, T., Kwapinski, W., Leahy, J. J., Healy, M. G., & Lawlor, P. G. 2012. Effect of sawdust addition on composting of separated raw and anaerobically digested pig manure. Journal of Environmental Management. 111, 70–77.
  • Wei, L., Shutao, W., Jin, Z., & Tong, X. 2014. Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresource Technology. 154, 148–154.
  • m, M., & Kazmi, A. A. 2009. Rotary drum composting of vegetable waste and tree leaves. Bioresource Technology. 100(24): 6442–6450.
  • Yaser, A. Z. 2019. Green engineering for campus sustainability. In Green Engineering for Campus Sustainability. Springer Singapore.
  • Yaser, A. Z., Rahman, R. A., & Kali, M. S. 2007. Co-composting of palm oil mill sludge-sawdust. Pakistan Journal of Biological Sciences. 10(24):4473–4478.
  • Zahrim, A., Sariah, S., Mariani, R., Azreen, I., Zulkiflee, Y., & Fazlin, A. 2019. Passive Aerated Composting Of Leaves And Predigested Office Papers. Research Methods and Applications in Chemical and Biological Engineering.
  • Zhang, L., & Sun, X. 2016. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresource Technology. 218: 335–343.
  • Zhang, L., & Sun, X. 2016. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Management. 48: 115–126.
  • Zhang, L., & Sun, X. 2017. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste. Bioresource Technology. 245:152–161.
  • Zhang, L., & Sun, X. 2018. Evaluation of maifanite and silage as amendments for green waste composting. Waste Management. 77:435–446.

Download Full Paper Here (Right-Click and Save As)

ACKNOWLEDGMENTS
This work is supported financially by grant SDK0102-2019 from Universiti Malaysia Sabah

FOOD WASTE-DRY LEAVES COMPOSTING: MIXTURE FORMULATION, TURNING FREQUENCY AND KINETIC ANALYSIS

Mohd Al Mussa Ugak, Nur Aqeela Syuhadah Aji, Abu Zahrim Yaser*, Junidah Lamaming, Mariani Rajin and Sariah Saalah

Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah,
Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
*Corresponding author: Abu Zahrim Yaser Email: zahrim@ums.edu.my

Received 15th March 2021; accepted 24th March 2021
Available online 20th May 2022

ABSTRACT. Composting is a controlled biological process that converts organic matter into soil conditioner and kinetic modelling is necessary to design the composting system. The aims of this study are to determine the optimum compost mixture and turning frequency for food waste and dry leaves composting, as well as to evaluate an elemental kinetic model based on volatile solids (VS). The elemental kinetics of the process were determined using pseudo zero-, first-, second- and n-order equations. Three different feedstock mixtures were used, namely 40% FW (Mix A), 60% FW (Mix B) and 80% FW (Mix C). Four sets of experiments (TF for every 0, 1, 3, and 5 days) were conducted to investigate the turning frequency (TF). The composting process was carried out in a compost bottle for 40 days. Based on organic matter loss, Mix B and C had the highest OM loss, indicating an acceptable initial compost mixture. The turning frequency of every three days resulted in the highest organic matter loss. Kinetic analysis was performed using coefficient correlation (R2), root mean square error (RMSE) and modelling efficiency (EF). Application of the second-order model resulted in good responses for compost mixture Mix B and C. Meanwhile, the n-order model successfully estimated the VS changes for the 3-days TF.

KEYWORDS. Compost, soil conditioner, modelling, second order, n-order

REFERENCE

  • Ajmal, M., Aiping, S., Awais, M., Ullah, M. S., Saeed, R., Uddin, S., Ahmad, I., Zhou, B., & Zihao, X. (2020). Optimization of pilot-scale in-vessel composting process for various agricultural wastes on elevated temperature by using Taguchi technique and compost quality assessment. Process Safety and Environmental Protection, 140, 34–45. https://doi.org/10.1016/j.psep.2020.05.001
  • APHA. (1985). Standard Method for the Examination of Water and Wastewater (16th ed.). American Public Health Association.
    Baptista, M., Antunes, F., Gonçalves, M. S., Morvan, B., & Silveira, A. (2010). Composting kinetics in full-scale mechanical-biological treatment plants. Waste Management, 30(10), 1908–1921. https://doi.org/10.1016/j.wasman.2010.04.027
  • Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., & Sánchez, A. (2018). Composting of food wastes : Status and challenges. Bioresource Technology, 248, 57–67. https://doi.org/10.1016/j.biortech.2017.06.133
  • Chen, C., Chaudhary, A., & Mathys, A. (2020). Nutritional and environmental losses embedded in global food waste. Resources, Conservation and Recycling, 160(April), 104912.https://doi.org/10.1016/j.resconrec.2020.104912
  • Ebrahimzadeh, R., Ghazanfari Moghaddam, A., Sarcheshmehpour, M., & Mortezapour, H. (2017). A novel kinetic modeling method for the stabilization phase of the composting process for biodegradation of solid wastes. Waste Management and Research, 3 (12), 1226–1236. https://doi.org/10.1177/0734242X17733538
  • Fan, Y. Van, Lee, C. T., Leow, C. W., Chua, L. S., & Sarmidi, M. R. (2016). Physico-Chemical and Biological Changes During Co-Composting of Model Kitchen Waste, Rice Bran and Dried Leaves With Different Microbial Inoculants. Malaysian Journal of Analytical Science, 20(6), 1447–1457. https://doi.org/10.17576/mjas-2016-2006-25
  • Fei-Baffoe, B., Osei, K., Agyapong, E. A., & Nyankson, E. A. (2016). Co-composting of organic solid waste and sewage sludge–a waste management option for University Campus. International Journal of Environment, 5(1), 14–31. https://www.nepjol.info/index.php/IJE/article/view/14562
  • Guidoni, L. L. C., Marques, R. V., Moncks, R. B., Botelho, F. T., da Paz, M. F., Corrêa, L. B., & Corrêa, É. K. (2018). Home composting using different ratios of bulking agent to food waste. Journal of Environmental Management, 207, 141–150. https://doi.org/10.1016/j.jenvman.2017.11.031
  • Hamelers, H. V. M. (2004). Modeling composting kinetics: A review of approaches. Reviews in Environmental Science and Biotechnology, 3(4), 331–342. https://doi.org/10.1007/s11157-004-2335-0
  • Hamoda, M. F., Abu Qdais, H. A., & Newham, J. (1998). Evaluation of municipal solid waste composting kinetics. Resources, Conservation and Recycling, 23(4), 209–223. https://doi.org/10.1016/S0921-3449(98)00021-4
  • Hu, Z., Lane, R., & Wen, Z. (2009). Composting clam processing wastes in a laboratory-and pilot-scale in-vessel system. Waste Management, 29(1), 180–185. https://doi.org/https://doi.org/10.1016/j.wasman.2008.02.016
  • Jiang-ming, Z. (2017). Effect of turning frequency on co-composting pig manure and fungus residue. Journal of the Air and Waste Management Association, 67(3), 313–321. https://doi.org/10.1080/10962247.2016.1232666
  • Jolanun, B., Tripetchkul, S., Chiemchaisri, C., Chaiprasert, P., & Towprayoon, S. (2005). The Application of a Fed Batch Reactor for Composting of Vegetable and Fruit Wastes.. Science & Technology Asia, 10(2), 60–69. https://ph02.tci thaijo.org/index.php/SciTechAsia/article/download/41588/34372
  • Kabbashi, N., Suraj, O., Alam, M. Z., & MSM, E. (2014). Kinetic Study for Compost Production by Food Waste-Dry Leaves Composting: Mixture Formulation, Turning Frequency and Kinetic Analysis Isolated Fungal Strains. International Journal of Waste Resources, 04(04). https://doi.org/10.4172/2252-5211.1000169
  • Kalamdhad, A. S., & Kazmi, A. A. (2009). Effects of turning frequency on compost stability and some chemical characteristics in a rotary drum composter. Chemosphere, 74(10), 1327–1334. https://doi.org/10.1016/j.chemosphere.2008.11.058
  • Kamaruddin, M. A., Idrus, A. F. M., Norashiddin, F. A., Zawawi, M. H., & Alrozi, R. (2018). A Study on the Effects of Carbon to Nitrogen Layers in Semi Passive Aerated Reactor for Organic Waste Decomposition. American Institute of Physics, 020198. https://doi.org/10.1063/1.5066839
  • Kulcu, R. (2016). New kinetic modelling parameters for composting process. Journal of Material Cycles and Waste Management 2015 18:4, 18(4), 734–741. https://doi.org/10.1007/S10163-015-0376-9
  • Liao, P. H., Vizcarra, A. T., & Lo, K. V. (1994). Composting of salmon-farm mortalities. Bioresource Technology, 47, 67–71.
  • Liu, Z., Wang, X., Wang, F., Bai, Z., Chadwick, D., Misselbrook, T., & Ma, L. (2020). The progress of composting technologies from static heap to intelligent reactor: Benefits and limitations. Journal of Cleaner Production, 270, 122328. https://doi.org/10.1016/j.jclepro.2020.122328
  • Malamis, D., Moustakas, K., & Haralambous, K. J. (2016). Evaluating in-vessel composting in treating sewage sludge and agricultural waste by examining and determining the kinetic reactions of the process. Clean Technologies and Environmental Policy, 18(8), 2493–2502. https://doi.org/10.1007/s10098-016-1230-z
  • Manu, M. K., Kumar, R., & Garg, A. (2016). Drum Composting of Food Waste: A Kinetic Study. Procedia Environmental Sciences, 35, 456–463. https://doi.org/10.1016/j.proenv.2016.07.029
  • Manu, M. K., Kumar, R., & Garg, A. (2017). Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum. Bioresource Technology, 234, 167–177. https://doi.org/10.1016/j.biortech.2017.03.023
  • Manu, M. K., Kumar, R., & Garg, A. (2019). Decentralized composting of household wet biodegradable waste in plastic drums: Effect of waste turning, microbial inoculum and bulking agent on product quality. Journal of Cleaner Production, 226, 233–241. https://doi.org/10.1016/j.jclepro.2019.03.350
  • Manyapu, V., Mandpe, A., & Kumar, S. (2018). Synergistic effect of fly ash in in-vessel composting of biomass and kitchen waste. Bioresource Technology, 251(December 2017), 114–120. https://doi.org/10.1016/j.biortech.2017.12.039
  • Mohd Al Mussa Ugak, Nur Aqeela Syuhadah Aji, Abu Zahrim Yaser, Junidah Lamaming, Mariani Rajin and Sariah Saalah
    Neugebauer, M., & Sołowiej, P. (2017). The use of green waste to overcome the difficulty in small-scale composting of organic household waste. Journal of Cleaner Production, 156, 865–875. https://doi.org/10.1016/j.jclepro.2017.04.095
  • Ng, C. G., Yusoff, S., Zaman, N. S. B. K., & Siewhui, C. (2021). Assessment on the Quality and EnvironmentalImpacts of Composting at Institutional Communityusing Life Cycle Assessment Approach. Polish Journal of Environmental Studies, 30(3), 2232–2244. https://doi.org/10.15244/PJOES/124115
  • Nguyen, V., Le, T., Bui, X., Nguyen, T., & Vo, T. (2020). Effects of C / N ratios and turning frequencies on the composting process of food waste and dry leaves. Bioresource Technology Reports, 11(May), 100527. https://doi.org/10.1016/j.biteb.2020.100527
  • Paredes, C., Roig, A., Bernal, M. P., Sánchez-Monedero, M. A., & Cegarra, J. (2000). Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biology and Fertility of Soils, 32(3), 222–227. https://doi.org/10.1007/s003740000239
  • Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Research International, 2017. https://doi.org/10.1155/2017/2370927
  • Petric, I., Helić, A., & Avdić, E. A. (2012). Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure. Bioresource Technology, 117, 107–116. https://doi.org/10.1016/J.BIORTECH.2012.04.046
  • Qdais, H. A., & Al-Widyan, M. (2016). Evaluating composting and co-composting kinetics of various agro-industrial wastes. International Journal of Recycling of Organic Waste in Agriculture, 5(3), 273–280. https://doi.org/10.1007/s40093-016-0137-3
  • Sangamithirai, K. M., Jayapriya, J., Hema, J., & Manoj, R. (2015). Evaluation of in-vessel co-composting of yard waste and development of kinetic models for co-composting. International Journal of Recycling of Organic Waste in Agriculture, 4(3), 157–165. https://doi.org/10.1007/s40093-015-0095-1
  • Soto-paz, J., Oviedo-ocaña, E. R., Manyoma-velásquez, P. C., Torres-lozada, P., & Gea, T. (2019). Evaluation of mixing ratio and frequency of turning in the co-composting of biowaste with sugarcane filter cake and star grass. Waste Management, 96, 86–95. https://doi.org/10.1016/j.wasman.2019.07.015
  • SWCorp. (2020). Modul 10 Laporan Pengurusan Sisa Pepejal Malaysia. April, 1–49.
  • Trisakti, B., J Lubis, T. H., & Irvan. (2017). Effect of Turning Frequency on Composting of Empty Food Waste-Dry Leaves Composting: Mixture Formulation, Turning Frequency and Kinetic Analysis Fruit Bunches Mixed with Activated Liquid Organic Fertilizer. IOP Conference Series: Material Science and Engineering, 180(1). https://doi.org/10.1088/1742-6596/755/1/011001
  • Varma, V. S., Prasad, R., Deb, S., & Kalamdhad, A. S. (2018). Effects of Aeration During Pile Composting of Water Hyacinth Operated at Agitated , Passive and Forced Aerated Condition. Waste and Biomass Valorization, 9(8), 1339–1347. https://doi.org/10.1007/s12649-017-9876-2
  • Waqas, M., Nizami, A. S., Aburiazaiza, A. S., Barakat, M. A., Rashid, M. I., & Ismail, I. M. I. (2018). Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia. Journal of Cleaner Production, 176, 426–438. https://doi.org/10.1016/j.jclepro.2017.12.165
  • Yang, F., Li, Y., Han, Y., Qian, W., Li, G., & Luo, W. (2019). Performance of mature compost to control gaseous emissions in kitchen waste composting. Science of the Total Environment, 657, 262–269. https://doi.org/10.1016/j.scitotenv.2018.12.030
  • Zahrim, A. Y., Leong, P. S., Ayisah, S. R., Janaun, J., Chong, K. P., Cooke, F. M., & Haywood, S. K. (2016). Composting paper and grass clippings with anaerobically treated palm oil mill effluent. International Journal of Recycling of Organic Waste in Agriculture, 5(3), 221–230. https://doi.org/10.1007/s40093-016-0131-9
  • Zahrim, A. Y., Rajin, M., Saalah, S., & Aji, N. A. S. (2020). Pengkomposan: Suatu Pengenalan. Penerbit Universiti Malaysia Sabah.
  • Zahrim, A. Y., Sariah, S., Mariani, R., Azreen, I., Zulkiflee, Y., & Fazlin, A. S. (2019). Passive Aerated Composting of Leaves and Predigested Office Papers. Research Methods and Applications in Chemical and Biological Engineering, 217–236. https://doi.org/10.1201/9780429424137-14
  • Zhang, J., Ying, Y., & Yao, X. (2019). Effects of turning frequency on the nutrients of Camellia oleifera shell co-compost with goat dung and evaluation of co-compost maturity. PLoS ONE, 14(9), 1–16. https://doi.org/10.1371/journal.pone.0222841
  • Zhao, S., Liu, X., & Duo, L. (2012). Physical and chemical characterization of municipal solid waste compost in different particle size fractions. Polish Journal of Environmental Studies, 21(2), 509–515.
  • Zhou, Y., Selvam, A., & Wong, J. W. C. (2018). Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresource Technology, 249, 182–188. https://doi.org/https://doi.org/10.1016/j.biortech.2017.09.212

Download Full Paper Here (Right-Click and Save As)

THE ROLE OF GOVERNMENT INSTITUTIONS IN MANAGING THE ENVIRONMENT IN NIGERIA: POLICY AND GOVERNANCE REVIEW

Ahmed Abubakar*1, Mohd Yusoff Ishak2, Khadijah Musa Yaro3, Aminu Suleiman Zangina4

1Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia.
2Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia.
3Department of Biotechnology, Modibbo Adama University of Technology, Yola, Nigeria
4National Biotechnology Development Agency, North-West Zone, Katsina, P.M.B. 2140, Nigeria.
Correspondence author: Ahmed Abubakar Email: abubakar8550483@gmail.com

Received 13th November 2021; accepted 22nd November 2021
Available online 20th May 2022

ABSTRACT. Environmental protection starts with individuals, groups, and communities at large. The government at its level formulates, regulates, and enforces laws and policies governing environmental protection as well as the punishment of violators through designated legal institutions. The aim of this review is to examine the role of environmental institutions in protecting the environment in Nigeria. The findings revealed that national policies for the protection of the environment came into existence only in 1991. This study employed literature review and combed through articles published from 2000 to 2022 in the contexts of Nigeria. The objective of this study is to highlight the role that environmental institutions play in managing the environment in Nigeria. There are numerous environmental challenges in Nigeria, including air pollution, water pollution, lead poisoning, poor waste management, deforestation, desertification, wind erosion, and flooding, all of which have harmed the environment and the population. National policies for the sustainable use of the environment include the National Environmental Policy, National Policy on Climate Change, Environmental Impact Assessment Act, Endangered Species (Control of International Trade and Traffic) Act, and the National Drought Plan. The national regulatory bodies include the National Environmental Standards and Regulations Enforcement Agency; the National Oil Spill Detection and Response Agency; the Federal Ministry of Environment; the Directorate of Petroleum Resources; the Nigerian Nuclear Regulatory Authority; the Federal Ministry of Water Resources; and the National Oil Spill Detection and Response Agency, among others. The study recommends that the government strengthens the national policies, laws, and regulations on the environment to meet the challenges of the 21st century, strengthens the capacity of environmental law enforcement personnel, and provides necessary logistics to aid in executing their functions. Governments should inject more funds into environmental protection and stakeholder engagement.

KEYWORDS: Environment, Law, Policy, Governance, Nigeria

REFERENCE

  • Akamabe, U.B., & Kpae, G. (2017). A Critique on Nigeria National Policy on Environment: Reasons for Policy Review. IIARD International Journal of Geography and Environmental Management. 3(3): 22-36.
  • Aye, I., & Wingate, E. O. (2019). Nigeria’s flare gas (Prevention of waste & pollution) regulations 2018. Environmental Law Review, 21(2), 119–127. https://doi.org/10.1177/1461452919838264
  • Berrang-Ford, L., Ford, J. D., & Paterson, J. (2011). Are we adapting to climate change? Global Environmental Change, 21(1), 25–33. https://doi.org/10.1016/j.gloenvcha.2010.09.012
  • Dasgupta, S., DeCian, E., & Verdolini, E. (2016) ‘The Political Economy of Energy Innovation’ 2016/17. Helsinki: UNU-WIDER.
  • Efobi, U., Belmondo, T., Orkoh, E., Atata, S.N., & Akinyemi, O. (2018). Environmental pollution policy of small businesses in Nigeria and Ghana: Extent and impact, AGDI Working Paper, No. WP/18/050, African Governance and Development Institute (AGDI), Yaoundé
  • Ejidae, S.O., Omofuma, & Vivian, C.N. (2017). Environmental law and practice in Nigeria: overview. https://uk.practicallaw.thomsonreuters.com/w-006-3572?transitionType=Default&contextData=(sc.Default)&firstPage=true#co_anchor_a308764
  • Elenwo, E.I., & Akankali, J.A. (2014). Environmental policies and strategies in Nigeria oil and gas industry: Gains, challenges and prospects. Natural Resources. 5: 884-896
  • Federal Ministry of Environment (FME) (2016). National Policy on Environment. Federal Minstry of Environment, Abuja.
  • Ifesinachi, O.Y. (2018). The effects of oil pollution on the marine environment in the Gulf of Guinea—the Bonga Oil Field example, Transnational Legal Theory, 9:3-4, 254-271, DOI: 10.1080/20414005.2018.1562287
  • Kankara, A.I. (2013). Examining Environmental Policies and Laws in Nigeria. International Journal of Environmental Engineering and Management, Vol. 4(3), pp. 165-170
  • Najam, A., Papa, M., & Taiyab, N. (2006). Global Environmental Governance: A Reform Agenda. International Institute for Sustainable Development 161 Portage Avenue East, 6th Floor Winnipeg, Manitoba Canada.
  • Nicholas, O., Ernest, N. A., & Bobadoye, A. (2016). Review of policies, legislations and institutions for biodiversity information in sub – Saharan Africa. International Journal of Biodiversity and Conservation, 8(6), 126–137. https://doi.org/10.5897/ijbc2015.0938
  • Okafor-Yarwood, I. (2018). The effects of oil pollution on the marine environment in the Gulf Of Guinea—The bonga oil field example. Transnational Legal Theory, 9(3–4), 254–271. https://doi.org/10.1080/20414005.2018.1562287
  • Oluwaseyi, A. (2017). The Prospects of Agriculture in Nigeria: How Our Fathers Lost Their Way – A Review. Asian Journal of Economics, Business and Accounting, 4(2), 1–30. https://doi.org/10.9734/ajeba/2017/35973
  • Omotehinse, A. O., & Ako, B. D. (2019). The environmental implications of the exploration and exploitation of solid minerals in Nigeria with a special focus on Tin in Jos and Coal in Enugu. Journal of Sustainable Mining, 18(1), 18–24. https://doi.org/10.1016/j.jsm.2018.12.001
  • Oruonye, E.D & Ahmed, Y.M. (2020). The role of enforcement in environmental protection in Nigeria. World Journal of Advanced Research and Reviews, 07(01): 048–056
  • Osawe, A.I., & Magnus, O.O. (2016). Environmental Governance in Nigeria: The Community Perspective. Public Policy and Administration, 6(2): 24-30
  • Public Health Nigeria (2022). List of environmental agencies in Nigeria and their functions. https://www.publichealth.com.ng/list-of-environmental-agencies-in-nigeria-and-their-functions/#:~:text=Environmental%20agencies%20are%20federal%2C%20state,by%20individuals%2C%20organizations%20and%20governments.
  • Roos, N., Heinicke, X., Guenther, E., & Guenther, T. W. (2020). The role of environmental management performance in higher education institutions. Sustainability (Switzerland), 12(2). https://doi.org/10.3390/su12020655
  • UNEP (2017). Introduction to environmental governance. https://globalpact.informea.org/sites/default/files/documents/International%20Environmental%20Governance.pdf
  • United Nations (2018). Bamako Convention: Preventing Africa from becoming a dumping ground for toxic wastes.https://www.unep.org/news-and-stories/press-release/bamako-convention-preventing-africa-becoming-dumping-ground
  • Urhobo Historical Society (2006)- Nigeria’s Environmental Treaties and Conventions http://www.waado.org/environment/environemntal-treaties/nig.
  • Wonah, E.I. (2017). The state, environmental policy and sustainable development in Nigeria. Global Journal of Arts, Humanities and Social Sciences 5(3): 25-40
  • Young, O. R. (2003). Environmental Governance: The Role of Institutions in Causing and Confronting Environmental Problems. International Environmental Agreements: Politics, Law and Economics, 3(4), 377–393. https://doi.org/10.1023/b:inea.0000005802.86439.39

Download Full Paper Here (Right-Click and Save As)

PRESERVATION COATING EFFECT OF ACID-SOLUBLE CHITOSAN ON THE SHELF LIFE OF BANANA IN SABAH

Flornica A. Ahing. and N. Wid.

Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, MALAYSIA
Corresponding author : Newati, Wid Email: newati@ums.edu.my

Received 13th November 2021; accepted 22nd November2021
Available online 20th May 2022

ABSTRACT. Chitosan, a biopolymer that consist of various properties, has multiple applications throughout industries where one of the promising applicarion of chitosan is its preservative effect. Chitosan, a bioactive natural edible coat can be considered a promising alternative to overcome the freshness of bananas during storage. Throughout this study, observations were made on weight loss, peel colour changes and titratable acidity for the effect of chitosan coating. In terms of weight loss, among four different concentration of chitosan coating solution, the 2.0% chitosan coating solution showed the lowest weight loss percentage which is 22.6% compare to others which were 1.0% (26.00%), 0.5% (26.20%) and 1.5% (34.24%) significantly. The result marked variations between the uncoated banana and coated banana at different concentrations of chitosan coating solution (ASC) which are 0.50, 1.00, 1.50 and 2.00%. The peel color changes were significantly different during the first and final day of observation for each concentration. A significant variation was observed for the titratable acidity of the banana fruit where the lowest value obtained was 0.812% during coating with 2.0% chitosan coating solution while the highest titratable acidity was observed during the coating with 1.5% chitosan solution which is 2.11%. To summarize, banana coating with chitosan can decreased the weight loss of the banana fruit as well as improve the peel color changes during 12 days of storage. Besides that, banana coating with chitosan can also lower the value of titratable acidity of the banana fruit compared to uncoated bananas.

KEYWORDS: chitosan, shelf life, coating, titratable acidity.

REFERENCE

  • Al-Qurashi, A. D., Awad, M. A., Mohamed, S. A. & Elsayed, M. L.2017. Postharvest Chitosan, Trans-Resveratrol and Glycine Betaine Dipping Affect Quality, Antioxidant Compounds, Free Radical Scavenging Capacity and Enzymes Activities of ‘Sukkari’ Banans During Shelf Life. Scientia Horticulturae. 219: 173-181.
  • Duan, C., Meng, X., Meng, J., Khan, M. I. H., Dai, L., Khan, A., A, X., Zhang, J., Huq, T. & Ni, Y. 2019. Chitosan As A Preservative For Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. Journal of Bioresouurces and Bioproducts. 4(1): 11-21.
    Dutta, P. K., Dutta. J. & Tripathi, V. S. 2004. Chitin and Chitosan: Chemistry, Properties and Application. Journal of sciencetific & industrial Research. 63:20-31
  • Jiang, Y., Li, J. & Jiang, W. 2005. Effects of Chitosan on Shelf life of Cold-Stored Litchi Fruit at Ambient Temperature. LWT 38: 757-761.
    Li, N., Xiong, X., Ha, Xia. & Wei, X. 2019. Comparative Preservation Effect of Water-Soluble and Insoluble Chitosan from Tenebrio molitor Waste. International Journal of Biological Macromolecules. 133: 165-171
  • Priyadarshi, R. & Rhim, J. W. 2020. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications.
  • Silva, W. B., Silva, G. M. C., Santana, D. B., Salvador, A. R., Medeiros, D. B., Belghith, I., Silva, N. M., Cordeiro, M. H. M. & Misobutsi, G. P. 2018. Chitosan Delays Ripening and ROS Production in Guava (Psidium guajava L.) Fruit. Food Chemistry. 242: 232-238.
  • Soradech, S., Nunthanid, J. & Limmatvapirat, S. 2017. Utilization of Shellac and Gelatin Composite Film for Coating to Extend the Shelf Life of Banana. Food Control. 73: 1310-1317.
  • Suseno, N., Savitri, E., Sapei, L. & Padmawijaya, K. S. 2014. Improving Shelf-Life of Cavendish Banana Using Chitosan Edible Coating. Procedia Chemistry. 9: 113-120.
  • Youn, D. K., No, H. K. & Prinyawiwatkul, W. 2007. Physical Characteristics of Decolorized chitosan Affected by Sun Drying during Chitosan Preparation. Carbohydrates Polymers. 69: 707-712.

Download Full Paper Here (Right-Click and Save As)

NATURAL RESOURCE-BASED RECREATIONAL ACTIVITIES DURING COVID-19 PANDEMIC: A LOCAL COMMUNITIES PERSPECTIVE IN SABAH, MALAYSIA

Walter J. Lintangah1*, Vilaretti Atin1 and Khalid Nurul Izzah Izati1

1International Tropical Forestry Program, Faculty of Tropical Forestry,
Universiti Malaysia Sabah, Malaysia

Corresponding author : Walter J. Lintangah, , Email :walterjl@ums.edu.my

Received 13th November 2021; accepted 22nd November 2021
Available online 20th May 2022

ABSTRACT: The COVID-19 pandemic has disrupted many activities, including tourism and recreational activities. This study determines the  local communities’ perceptions of local recreational activities or staycation based on the natural resources in Sabah during the pandemic. Using the convenience sampling method, the questionnaire survey was distributed to respondents through social media and email. Respondents including students, government, and private sectors were from different socio-demographics. Most of them preferred recreational activities based on nature- panorama activities, followed by those who chose extreme activities such as hiking, cultural base recreation, river-based activities, leisure vacation and jungle trekking. The respondents opined that recreational activities could generate income for the state’s economy. They perceived that the assistance provided by the government could help recover the present state to its original condition. Among the elements that needed special attention and improvement were related to the safety of visitors, the cleanliness of the surrounding recreation sites, the landscape beautification and basic infrastructure facilities. Among the roles that the government could contribute to stimulating and uplifting the tourism and recreation sectors include funding and finance allocation to help the industry players, promotion and publicity, upgrading and maintenance of facilities such as infrastructures and enforcement of related laws and policies. Reviving the local tourism is promising as long as the public observe the state’s Standard Operating Procedure (SOP).

KEYWORDS: COVID-19 Pandemic, Natural Resources-Based Recreation, Local Communities, Staycation, Tourism

 

REFERENCE

  • Abbas J., Mubeen R.,, Iorember P.T., Saqlain Raza S., Mamirkulova G., (2021). Exploring the impact of COVID-19 on tourism: transformational potential and implications for a sustainable recovery of the travel and leisure industry. Current Research in Behavioral Sciences, Volume 2. https://doi.org/10.1016/j.crbeha.2021.100033
  • Goh, H. C. (2021). Strategies for post-Covid-19 prospects of Sabah’s tourist market–Reactions to shocks caused by pandemic or reflection for sustainable tourism? Research in Globalization, 3, 100056.
  • Hall, C.M., & Boyd, S. (2005). Nature Based Tourism in Peripheral Areas. Clevedon: Channel View Publications
    9 | http://borneoscience.ums.edu.my/ Natural Resource-Based Recreational Activities During Covid-19 Pandemic: A Local Communities Perspective in Sabah, Malaysia
  • Jaafar, M., Kayat, K., Tangit, T.M., &Firdous Yacob, M. (2013), “Nature‐based rural tourism and its economic benefits: a case study of Kinabalu National Park”, Worldwide Hospitality and Tourism Themes, 5 (4). 342-352. https://doi.org/10.1108/WHATT-03-2013-0016
  • Kuo, M. (2015). How might contact with nature promote human health? Promising mechanisms and a possible central pathway. Frontiers in psychology, 6, 1093.
  • Latip, N.A., Rasoolimanesh, S.M., Jaafar, M., Marzuki, A. and Umar, MU (2018), “Indigenous residents’ perceptions towards tourism development: a case of Sabah, Malaysia”, Journal of Place Management and Development, Vol. 11 No. 4, pp. 391-410. https://doi.org/10.1108/JPMD-09-2017-0086
  • Lee-Peng Foo, Mui-Yin Chin, Kim-Leng Tan & Kit-Teng Phuah (2020): The impact of COVID-19 on tourism industry in Malaysia, Current Issues in Tourism, DOI: 10.1080/13683500.2020.1777951
  • Md Zain N.A, Zahari M.S, Hanafiah M.H, Zulkifly M.I, (2015). Core Tourism Products and Destination Image: Case Study of Sabah, Malaysia. World Academy of Science, Engineering and Technology International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering Vol:9, No:7, 2015
  • Monteiro, A., Eusébio, C., Carneiro, M. J., Madaleno, M., Robaina, M., Rodrigues, V., … & Borrego, C. (2021). Tourism and Air Quality during COVID-19 Pandemic: Lessons for the Future. Sustainability, 13(7), 3906.
  • Nga, J. L. H., Ramlan, W. K., & Naim, S. (2021). Covid-19 pandemic and its relation to the Unemployment situation in Malaysia: A Case Study from Sabah. Cosmopolitan Civil Societies: An Interdisciplinary Journal, 13(2).
  • Nik Hashim N.A, Fatt B.S., Mohtar T., Awang Z., Omar R.N., Zain E.N., Mahshar M, Nasir M.J. (2020). “Adventure Tourism: A Study Of Tunku Abdul Rahman Park, Sabah”. European Journal of Molecular & Clinical Medicine, 7, 8, 2020, 2440-2446.
  • Sung, T.P., Bagul, A.H., Sentian, J., & Dambul, R. (2012). Developing and promoting a highland community livelihood for sustainable tourism: The case of Kg. Bundu Tuhan, Ranau, Sabah. Geografia: Malaysian journal of society and space, 8, 94-99.
  • Snyman, S., & Bricker, K. S. (2019). Living on the edge: Benefit-sharing from protected area tourism. Journal of Sustainable Tourism, 27(6), 705-719.
  • United Nations World Tourism Organization (UNWTO). (2021a). UNWTO Inclusive Recovery Guide – Sociocultural Impacts of Covid-19, Issue 3: Women in tourism, UNWTO, Madrid, DOI: https://doi.org/10.18111/9789284422616
  • United Nations World Tourism Organization (UNWTO), (2021b). Impact Assessment Of The Covid-19 Outbreak On International Tourism. UNWTO, Madrid.
  • Valentine, P. (1992). ‘Nature-based tourism’, Special Interest Tourism. London: Belhaven Press.
  • Vărzaru, A. A., Bocean, C. G., & Cazacu, M., (2021). Rethinking Tourism Industry in Pandemic COVID-19 Period. Sustainability, 13(12), 6956.
  • Winter, P. L., Selin, S., Cerveny, L., & Bricker, K. 2020. Outdoor recreation, nature-based tourism,
  • Walter J. Lintangah, Vilaretti Atin and Khalid Nurul Izzah Izati
    and sustainability. Sustainability, 12(1), 81.
  • Wolsko, C., Lindberg, K., & Reese, R. (2019). Nature-based physical recreation leads to psychological well-being: Evidence from five studies. Ecopsychology, 11(4), 222-235.
  • Zain, N. A. M., Zahari, M. S. M., Hanafiah, M. H., & Zulkifly, M. I., (2016). Core Tourism Products and Destination Image: Case Study of Sabah, Malaysia. World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 9(7), 2605-2613.
    Book
  • Masanti M. (2016). Understanding Dark Tourism Acceptance in Southeast Asia: The Case of WWII Sandakan–Ranau Death March, Sabah, Malaysia. In: Mandal P., Vong J. (eds) Development of Tourism and the Hospitality Industry in Southeast Asia. Managing the Asian Century. Springer, Singapore. https://doi.org/10.1007/978-981-287-606-5_8
  • UNEP and WTO. 2005 Making Tourism More Sustainable: A Guide for Policy Makers. United Nations Environment Programme and World Tourism Organization.
    Supplementary
  • Amazing Borneo, (2021_. About Sabah. At: https://www.amazingborneo.com/sabah/about-sabah. Accessed on 3 September 2021.
  • Bedford, S., (2018). 11 Amazing Reasons to Visit Sabah, Malaysia, Culture Trip. At: https://theculturetrip.com/asia/malaysia/articles/11-amazing-reasons-to-visit-sabah-malaysia/. Accessed on 3 September 2021.
  • Bernama (2020a)(. Coronavirus Outbreak: All Flights From Sabah to Wuhan Suspended. Bernama, 26 January. At: https://bernama.com/en/general/news_covid-19.php?id=1809388. Accessed on 4 September 2021.
  • Bernama, (2020b). Orang Utan Nest Spotted at Poring Hot Spring. Bernama, 18 April. At: https://www.bernama.com/en/general/news_covid-19.php?id=1833480. Accessed on 6 September 2021.
  • Bernama, (2021). Strategies to Revitalise Tourism Sector Outlined. Dailyexpress. 28 September 2021.
    Brunei Darussalam-Indonesia-Malaysia-Philippine-East Asean Growth Area (BIMP-EAGA) , (2020). Why We Need to Save Ecotourism in a Post-Pandemic World. At: https://www.bimp-eaga.asia/article/why-we-need-save-ecotourism-post-pandemic-world. Accessed on 5 September 2021.
  • Daily Express,(2021). Poaching Alert After Surge In Demand For Wild Plants. Daily Express, 25 January. At: https://www.dailyexpress.com.my/news/165309/poaching-alert-after-surge-in-demand-for-wild-plants/. Accessed on 6 September 2021.
  • Dzulkifly, D. 2020. Muhyiddin: Tourism industry hit hardest by Covid-19 faces RM3.37b loss. Malay Mail, 13 March. At:
    https://www.malaymail.com/news/malaysia/2020/03/13/muhyiddin-tourism-industry-hit-hard-by-covid-19-to-lose-rm3.37b-while-gdp-s/1846323. Accessed on 3 September 2021.
  • Flanders Trade (2021). Coronavirus – The situation in Malaysia. At: https://www.flandersinvestmentandtrade.com/export/nieuws/coronavirus-%E2%80%93-situation-malaysia. Accessed on 3 September 2021.
  • Free Malaysia Today. (2021). Special Sabah Team Fights Poachers And Those Who Plunder Forest Produce. Free Malaysia Today, 30 January. At: https://www.freemalaysiatoday.com/category/nation/2021/01/30/special-sabah-team-fights-poachers-and-those-who-plunder-forest-produce/ Accessed on 6 September 2021.
  • Fong D.R., (2021). Sabah looks to the stars to revive tourism. Free Malaysia Today, 15 September. At: https://www.freemalaysiatoday.com/category/nation/2021/09/15/sabah-looks-to-the-stars-to-revive-tourism/
  • Geraldine, A., (2021). Critically Endangered Elephant Found Dismembered In Tongod Plantation. New Straits Times, 22 January. At: https://www.nst.com.my/news/nation/2021/01/659804/critically-endangered-elephant-found-dismembered-tongod-plantation#:~:text=Critically%20endangered%20elephant%20found%20dismembered%20in%20Tongod%20plantation,By%20Avila%20Geraldine&text=KOTA%20KINABALU%3A%20The%20carcass%20of,on%20Wednesday%20at%20about%208am. Accessed on 6 September 2021.
  • Higgins-Desbiolles, F. (2020). The End Of Global Travel As We Know It: An Opportunity For Sustainable Tourism. The Conversation, 18 March. At: https://theconversation.com/the-end-of-global-travel-as-we-know-it-an-opportunity-for-sustainable-tourism-133783. Accessed on 6 September 2021.
  • Lai, N. (2021). Sabah to see slower tourism recovery. The Borneo Post, 31 January. At: https://www.theborneopost.com/2021/01/31/sabah-to-see-slower-tourism-recovery/. Accessed on 7 September 2021.
  • Sabah Tourism Board. (2021). General Information-About Us. At: https://www.sabahtourism.com/about-us/?locale=en. Accessed on 5 September 2021.
  • The Borneo Post. 2020. Sabah’s Tourism Industry In Dire Straits. The Borneo Post, 28 July. At: https://www.theborneopost.com/2020/07/28/sabahs-tourism-industry-in-dire-straits/. Accessed on 5 September 2021.
  • The Borneo Post. (2021). 68 arrests as Sabah foresters turn up on poachers. The Borneo Post, 29 January. At: https://www.theborneopost.com/2021/01/29/68-arrests-as-sabah-foresters-turn-up-on-poachers/. Accessed on 6 September 2021.
  • Tibok, E. (2018). Empowering Communities Through Tourism in Sabah, Malaysian Borneo. At: https://www.borneoecotours.com/blog/empowering-communities-through-tourism-in-sabah-malaysian-borneo/. Accessed on 5 September 2021
  • Usop, C. (2020). Statistik STB Rekod Peningkatan Kehadiran Pelancong Ke Sabah. Utusan Borneo, 14 August. At: https://www.utusanborneo.com.my/2020/08/14/statistik-stb-rekod-peningkatan-kehadiran-pelancong-ke-sabah. Accessed on 3 September 2021.
  • Walter J. Lintangah, Vilaretti Atin and Khalid Nurul Izzah Izati
  • Wong, S.L. (2020). When Covid Resets Ecotourism. Earth Journalism Network, 8 September. At: https://earthjournalism.net/stories/when-covid-resets-ecotourism. Accessed on 5 September 2021.

Download Full Paper Here (Right-Click and Save As)