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ABSTRACT. Airborne light detection and ranging (LiDAR) instruments have been widely used 

for quantification of forest biomass. This study investigated the relationships between LiDAR data 

and aboveground biomass (AGB). The study area is located at the 50-ha dynamic plot in a 

primary forest area of the Pasoh Forest Reserve, a lowland dipterocarp forest, a type of evergreen 

tropical moist forest. A number of variables have been produced from the LiDAR metrics. These 

variables were correlated with AGB that were derived from census data. The study found that the 

CHM and a few matrices are the best predictors for AGB and therefore used for the estimation of 

AGB in the entire study area. The estimated AGB ranged from 52 to 718 Mg ha
-1

, with a root 

mean square error (RMSE) of about 59 Mg ha
-1

. The study suggests that the AGB estimates 

produced by this study are the most accurate - with an accuracy of 83% based on the mean 

absolute percentage error (MAPE) - as compared to other remotely-sensed based estimates in the 

study area. 
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INTRODUCTION 

 

Forest biomass is a key climate variable for the global carbon cycle and has attracted the attention 

of both scientists and policymakers. However, forest biomass is also an attribute that is very 

difficult to estimate. It can be estimated using field measurements such as tree height, stem 

diameter, and wood density by applying allometric models obtained from destructive sampling 

and weighing of dried vegetation (Zolkos et al., 2013 & Lu et al., 2016), and in situ measurements 

can be extended to larger areas using remote sensing methods (Frolking et al., 2009 & Houghton 

et al., 2009).  

 

Light Detection and Ranging (LiDAR) has become a primary source of data for assessing 

aboveground biomass (AGB) in various climatic regions and types of forests. LiDAR emits laser 

pulses and measures the return time of scattered returns to estimate the height and vertical structure 

of forests directly (Drake et al., 2002 & Lefsky et al., 2002). LiDAR can be acquired at high 

sampling density with excellent geometric accuracy and reveal AGB variation at spatial scales 

(Reutebuch et al., 2010 & Mallet and Bretar, 2009). LiDAR is currently used to bridge the gap 
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between field measurements and remotely sensed data. Therefore, LiDAR has emerged as the 

most promising technology for biomass estimation, especially over tropical forests when biomass 

density is high (Chen, 2013).  

 

LiDAR remote sensing systems can be distinguished based on how return signals are 

recorded (discrete return or waveform), scanning pattern (profiling or scanning), platforms  

(airborne, spaceborne or ground based) and footprint sizes. The most common configurations of 

LiDAR systems are airborne small footprint discrete return scanning LiDAR and has been used in 

a large number of studies for mapping AGB of forest. However, since the LiDAR technology 

evolved recently, airborne waveform LiDAR is becoming more common and this kind of data is 

used in this study.  

 

Estimating AGB using LiDAR can be carried out using two approaches (Dong and Chen, 

2018): (i) area-based and (ii) individual tree-based methods. Due to the structural complexity of 

Malaysia’s tropical rainforests, these two methods offer different capability in estimating AGB in 

terms of accuracies and require different levels of skills to process the LiDAR point-cloud. 

Therefore, comprehensive research is needed to identify the relationship between AGB measured 

in the field and LiDAR metrics, and to determine how these relationships impact the accuracy of 

predictive models. This study integrates tree level census data with LiDAR variables to predict 

AGB in lowland dipterocarp forest. The goal of this study was to model AGB based on trees that 

were measured and mapped in the field, with the intention that the model could later be applied to 

a wider area. The immediate objectives were to: (1) develop AGB models based on census data 

and LiDAR data and (2) validate the model in terms of accuracy and precision. This study 

concentrated in the area-based method as the other methods have been investigated previously in 

the same study area (Wan Shafrina et al., 2017 & Wan Shafrina et al., 2018). 

 

MATERIAL AND METHODS 

 

It appears that area-based method is commonly used for large areas as compared to individual-tree 

method. This usually involves five (5) major steps, which are: (i) a sample of forest plots are set 

up in the field, where forest attributes are measured at the tree level and summarized at the plot 

level; (ii) LiDAR metrics are extracted within these field plots; (iii) LiDAR metrics are extracted 

for the whole study area by partitioning the study area into grid cells of equivalent size to field 

plots and calculating LiDAR metrics within each grid cell; (iv) statistical models are developed to 

predict forest attributes using LiDAR metrics using the data at the plot level; and (v) the 

developed plot-level models are applied to each grid cell to predict and map forest attributes for 

the whole study area. 

 

This study focuses on the development of LiDAR point-cloud based models for estimating AGB in 

the 50-ha Forest Dynamic Plot (FDP). The study also attempts to produce estimates at the highest 

accuracy since the census was carried out at 100% accuracy, where all trees with ≥ 1 cm diameter 

were measured and the locations are well mapped. Therefore, the distribution of the sample plots  
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can be placed anywhere within the 50-ha plot. This is one of the advantages of having 100% 

census data. Figure 1 shows an overall methodology that was adopted in this study. 

 

 

 
 

Figure 1: Flowchart of the methodology 

 

The study area 

Pasoh Forest Reserve (FR) is located in Jelebu District of Negeri Sembilan, Peninsular Malaysia 

(Figure 2). The FR sits in a rain-shadow valley (Ashton et al. 2003) with annual rainfall record 

varies between 1200–2400 mm. The forest is classified as south-central red meranti-keruing forest 

(Wyatt-Smith, 1987) characterized by the domination of Dipterocarpaceae family at the upper 

canopy. The main canopy formed at around 35 m height and the emergent trees reach 50–60 m tall 

(Manokaran et al., 2003). An area totaled 1813 ha at the south-west corner of the forest reserve is 

designated as Pasoh Research Forest, where Pasoh 50-ha FDP lies. The plot is located in lowland 

primary tropical rain forest nestled within Pasoh Research Forest. The FDP was established 

between 1985 and 1988 to monitor long-term population and structural dynamics of primary forest 

(Kochummen et al., 1990; Manokaran et al., 1990) and re-census at five-year intervals ever since. 

To date, the plot sampled 435,591 trees (≥ 1 cm dbh) representing 819 species. 
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Figure 2: The location of the FDP, which is located in Negeri Sembilan, Peninsular Malaysia. The 

FDP measures 1000 × 500 m 

 

Census approach 

The FDP measured 1000 m length by 500 m width. Census of trees is based on protocols 

(Manokaran and LaFrankie, 1990 & Condit, 1998). All free-standing trees with stem diameter at 

breast height (DBH) measured 1 cm or greater are tagged with unique number, measured at DBH, 

mapped and identified to species. Tree height is not measured. The census data that was used in 

this study was the seventh (7
th

) census. The census activity was started in 2015 and completed in 

2018.  
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The 50-ha plot was divided into square plots measuring 50 × 50 m, which has made the 

total number of 200 plots. These plots served two purposes, i.e. one for sampling and another for 

validation. In this case, 140 plots were used as samples and the remaining 60 plots were used for 

validating the results (Figure 2-c). The AGB within each sample plot has been estimated based on 

the census data. The estimation were further divided into several diameter classes of trees, i.e. ≥ 5 

cm, ≥ 10 cm, ≥ 15 cm, ≥ 20 cm, ≥ 25 cm, and ≥ 30 cm. Trees with dbh smaller than 5 cm are not 

taken into account in this study. These have produced 6 independent variables for AGB. The AGB 

for each tree was estimated base on allometric equation as found in (Chave et al., 2014). 

 

LiDAR data 

The flight mission was conducted on 26 April 2018. LiDAR data for the study area were obtained 

with a Riegl LMS-Q680i LiDAR system onboard EC120 Helicopter at 600 m flying altitude. The 

sensor scanning at ±30° scan angle at nadir with an average point density of 8.8 points per m
2
 and 

a vertical accuracy of ±15 cm RMSE. LiDAR metrics have been derived based on the point-cloud 

by using R program (McGaughey, 2009). Generally LiDAR metrics are categorized into three 

categories, which are (i) related to height (a percentile variable), (ii) related to canopy cover and, 

(iii) describing the variation in the returns intensity (standard deviation or variance). Altogether 82 

LiDAR metrics have derived from the LiDAR point-cloud and these were used as predictor 

variables for the AGB.   

 

Statistical analysis 

While there are a number of options for developing statistical models, this study focused primarily 

on linear regression. Existing studies indicate linear regression works best in conifer dominated 

forests; the predictions are not as good in tropical forests (Dong and Chen, 2018). The models 

cannot be applied universally and have to be developed on an area by area basis. The correlation 

analysis was carried out between the derived AGB (6 independent variables) and the LiDAR 

metrics (82 predictor variables). Linear regression method was adopted to correlate these variables 

and have produced 492 linear correlations. Later the best predictors out of the correlations were 

used to produce the best prediction models by using multiple linear regression method. 

 

Accuracy assessment 

The performance of the empirical models that have been developed from the correlations was 

assessed by using AGB values in validation plots. Root mean square error (RMSE) and mean 

absolute percentage error (MAPE) were calculated by comparison between the AGB estimated 

from census data and predicted from the models developed.  

 

RESULT AND DISCUSSION 

 

Summary of the census data 

Each and every standing trees with dbh measuring ≥ 1cm was tagged as a unique ID in the census. 

Information such as tag number, dbh, species and position i.e. x and y coordinates are recorded in 

the census datasheet. Figure 3 summarizes the number of trees and the calculated AGB within the 

FDP. It is obvious that, although the number of small trees (dbh = 5.0 – 29.9) are plenty, the AGB  
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within these trees are not that significant. However, larger trees (dbh ≥ 30 cm) indicated that 

although they small in terms of number, the AGB is substantially high. It means that the AGB is 

within this forest is stored predominantly in large trees.  

 

  

Figure 3: Summary of the census data 

 

Altogether 74,910 trees (with dbh ≥ 5.0 cm) were taken into account for this study 

(Figure 4-a). Based on the census records, the remaining smaller trees (dbh ≤ 5.0 cm) was 167,451 

stands, which is more than 2 folds greater that of trees ≥ 5.0 cm. However, these were not taken 

into account in this study.  It can be concluded that the average number of trees and AGB within 

FDP was about 1498 trees ha
-1

 and 280 Mg ha
-1

, respectively for trees ≥ 5.0 cm. 

 

Estimation models 

The objective of modelling is to define the best equation that represents the trend between the two 

sets of variables and represents reality. In this case, the LiDAR metrics were correlated with AGB 

to produce models. The first screening indicated that only few LiDAR metrics have linear 

correlation with AGB. Variables related to height and canopy relief, especially canopy height 

model (CHM) (Figure 4-b) are the best predictor for AGB in the study area. According to this 

finding, further analysis has been carried out to combine the best predictors into a single model to 

produce prediction functions. Multiple variables regression method was used to serve this purpose. 

Table 1 summarizes the models that have been derived from this process. The models represent 

the best-fit equation to estimate AGB for each dbh classes within the study area.  
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Figure 4: Spatially distributed map of census trees (a), canopy height model (b), and the 

estimated AGB (c). 
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Estimation Models Variables Coefficient Adjusted R
2

RMSE 

(Mg ha
-1

)
MAPE

Accuracy

(%)

Model 1 

(≥5 cm)
Intercept -284.45 0.48 61.68 0.18 82.41

HSD 23.28

Canopy relief ratio 678.46

Model 2 

(≥10 cm)
Intercept -293.49 0.49 61.05 0.17 83.36

HVAR 1.44

HKUR 67.77

HSKE -128.87

H05TH 2.24

Model 3

(>15 cm)
Intercept -154.6 0.55 59.01 0.18 82.41

CHM 16.73

Model 4

(≥20 cm)
Intercept -96.15 0.56 57.96 0.19 80.77

CHM 18.35

% of all returns above mean /

total first return
-1.45

Model 5 

(≥25 cm)
Intercept -191.78 0.55 59.03 0.21 78.72

CHM 16.75

Model 6 

(≥30 cm)
Intercept -343.52 0.5 60.71 0.25 75.23

HVAR 1.44

HKUR 58.33

HSKE -123.67

H05TH 2.23
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Generally R
2
 value is a good measure and commonly used for the model fit but the quest for the 

best R-squared can lead to over-fitting the data. The best model generally have the following 

principles (Dong and Chen, 2018): (i) models should have as few parameters as possible; (ii) 

linear models should be preferred to non-linear models; (iii) experiments relying on few 

assumptions should be preferred to those relying on many; (iv) models should be pared down until 

they are minimal but adequate, (v) simple explanations should be preferred to complex 

explanations. Most predictive LiDAR based models should not have more than three variables 

generally representing some form of the three metrics as mentioned earlier.  

 

Referring to the Table 1, the study produced 6 different models to estimate AGB at different 

diameter classes. These models were validated and the accuracy was assessed.  While the R
2
 is 

showing good correlations, the RMSE and accuracy are not as good as those models of having 

lower R
2
. These conditions indicate that the LiDAR returns interact across the stand structure, 

canopy conditions, and stand density of forests differently. The combination of several variables 

did not improve the correlation significantly as compared to that of using a single variable. 

However the combination of several variables can represent the reality better than that of using a 

single variable for estimating AGB within the study area. The total AGB within the entire study 

area ranged from 52 to 718 Mg ha
-1

 with an average of 284 Mg ha
-1

. A spatially distributed map of 

AGB with a cell size of 50 m has been produced (Figure 4-c) and it the total AGB was estimated 

at 14,018 Mg for the entire FDP. 

 

Table 1: Summary of the models developed in this study 
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Another important requirement for an appropriate linear regression model is that the data are 

related linearly. If that assumption is violated, there may again be transformations that can be 

applied to create a linear relationship. Since the relationship is nonlinear and scale-dependent 

between LiDAR metrics and most forest attributes, the grid cell size for model prediction (i.e., 

minimal mapping unit) has to be equivalent to the field plot size. A critical issue is to choose the 

proper field plot size. When calculating plot-level forest attributes using tree-level attributes, the 

common practice is that a tree is included or excluded based on whether the tree trunk is inside or 

outside of the plot, even if the tree crown is partially inside the plot. However, the extraction of 

LiDAR metrics typically uses cookie-cutter approaches, so inconsistency exists between LiDAR 

metrics and field data for trees near the edge of plots.  

 

Such “edge-effects” are more severe for small plots, leading to large errors in modeling forest 

attributes (Frazer et al., 2011). One way of reducing modeling errors is to use larger plots, which, 

however, also requires more fieldwork per plot. The choice of proper field plot size and, in 

general, field plot design, is an important yet difficult issue. LiDAR metrics at plot scale are 

commonly calculated based on either laser points or rasterized cells, even if the same formulas as 

listed in Table 1 are used. The metrics based on points could be sensitive to the flight conditions 

and the sensor setting (Roussel et al., 2017). In contrast, cell-based metrics can reduce such 

variations by focusing on only the canopy surface heights, which, however, miss the structural 

variations within canopy. Some researchers found that the different ways of generating metrics 

have small impacts on the performance of predicting forest attributes (Lu et al., 2012 & Chirici et 

al., 2016). 

 

Third, although numerous LiDAR metrics can be generated from a point cloud or CHM, the 

metrics used to predict forest attributes should be carefully chosen to both increases the accuracy 

and enhance the interpretability of the models (Chen, 2013 & Magnussen et al., 2016). 

 

CONCLUSION 

 

This study has shown the potential use of waveform data in predicting structural and biophysical 

parameters of low land dipterocarp forest in Malaysia at high accuracy. The final models 

developed for AGB perform well with the adjusted R
2
 ranging from 0.7 to 0.5. The lowest RMSE 

(59.01 Mg ha
-1

) was derived from the model that was used to estimate AGB for tree ≥ 15 cm. 

However, the most accurate estimate, i.e. 83.36% was from the model that was used to estimate 

AGB for trees ≥ 10 cm. The study also demonstrated that estimating AGB in tropical forest by 

using waveform LiDAR can improve by reducing RMSE at about 40 Mg ha
-1

 as compared with 

other estimates from satellite imagery data (Hamdan et al., 2017 & Hamdan and Afizzul, 2018). 

Although limitations still exist, the information provided by the study can be a useful reference for 

other studies especially related to the applications of remotely sensed data for AGB estimations. 
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