Sk Amir Hossain1 *, Chanchal Mandal1, Toufiq Ahmed1 & S.M Rifat Rahman1
1Biotechnology and Genetic Engineering discipline, Khulna University, Khulna, Bangladesh
* Corresponding author: isti_99@yahoo.com

ABSTRACT. Conventional methods for covalent immobilization of proteins often result in denaturation due to chemical treatments. However, proteins immobilized at microbial cell surfaces by regular cellular processes could be bound covalently to the cell wall without being exposed to chemical treatment. Yeasts display systems provide several advantages over bacterial system. The secretory and post-translational pathway in yeast, are similar to those of higher eukaryotes which established them as better hosts for production of eukaryotic proteins. The expression of recombinant proteins immobilized at the cell surface ofSaccharomyces cerevisiae has now been practiced for the last two decades. Although different surface display systems have been made for specific purposes, the system with broad applicability has not been developed so far. Most of the vectors constructed for surface display of recombinant proteins in yeast so far were created for single-use in particular case with ubiquitous laboratory plasmids that were not optimized for this purpose. Therefore, the construction of a new set of plasmids with optimized genetic cassette is still in demand. An optimized genetic cassette should allow easy and simple insertion of any gene of interest, with regulated and easily controlled expression level. In this review, we have tried to make a detailed study on all the genetic components used in successful yeast display systems till now in order to provide a good knowledge which will help the future researchers of this field to design an optimized genetic cassette which would be used for industrial scale application.

KEYWORDS: Yeast display system, yeast cell wall proteins, genetic cassette and recombinant protein.

    Andrés, I., Gallardo, O., Parascandola, P., Javier Pastor, F.I. &Zueco, J. 2005. Use of the cell wall protein Pir4 as a fusion partner for the expression of Bacillus sp. BP‐7 xylanaseA in Saccharomyces cerevisiae. Biotechnology and bioengineering 89(6): 690-697.
  • Boder, E.T. & Wittrup, K.D. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nature biotechnology 15(6): 553.
  • Boder, E.T. & Wittrup, K.D. 2000. Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430-344.
  • Boder, E.T., Bill, J.R., Nields, A.W., Marrack, P.C. & Kappler, J.W. 2005. Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide. Biotechnology and bioengineering 92(4): 485-491.
  • Cabib, E., Roberts, R. & Bowers, B. 1982. Synthesis of the yeast cell wall and its regulation. Annual review of biochemistry 51(1): 763-793.
  • Caro, L.H.P., Tettelin, H., Vossen, J.H., Ram, A.F., Van Den Ende, H. & Klis, F.M. 1997. In silicio identification of glycosyl phosphatidylinositol anchored plasma membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13(15): 1477-1489.
  • Chao, G., Cochran, J.R., & Wittrup, K.D. 2004.Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. Journal of molecular biology 342(2): 539-550.
  • Chen, I., Dorr, B.M. & Liu, D.R. 2011.A general strategy for the evolution of bond-forming enzymes using yeast display.Proceedings of the National Academy of Sciences108(28): 11399- 11404.
  • Cherf, G.M. & Cochran, J.R. 2015.Applications of yeast surface display for protein engineering in yeast surface display.Methods Mol Bio 1319:155-75.
  • Cho, B. K., Kieke, M. C., Boder, E. T., Wittrup, K. D., &Kranz, D. M. (1998). A yeast surface display system for the discovery of ligands that trigger cell activation. Journal of immunological methods, 220(1-2), 179-188. Colby, D.W.,
  • Garg, P., Holden, T., Chao, G., Webster, J.M., Messer, A., …& Wittrup, K.D. 2004. Development of a human light chain variable domain (VL) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. Journal of molecular biology 342(3): 901 -912.
  • Colby, D.W., Kellogg, B.A., Graff, C.P., Yeung, Y.A., Swers, J.S. & Wittrup, K.D. 2004.Engineering antibody affinity by yeast surface display.Methods Enzymol 388: 348- 358.
  • Ecker, M., Deutzmann, R., Lehle, L., Mrsa, V. & Tanner, W. 2006.Pir proteins of Saccharomyces cerevisiae are attached to β-1, 3-glucan by a new protein-carbohydrate linkage. Journal of Biological Chemistry 281(17): 11523-11529.
  • Feldhaus, M.J., Siegel, R.W., Opresko, L.K., Coleman, J.R., Feldhaus, J.M.W., Yeung, Y.A. , …& Graff, C. 2003. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nature biotechnology 21(2): 163.
  • Furukawa, H., Tanino, T., Fukuda, H. & Kondo, A. 2006. Development of novel yeast cell surface display system for homo oligomeric protein by coexpression of native and anchored subunits. Biotechnology progress 22(4): 994-997.
  • Gai, S.A. & Wittrup, K.D. 2007. Yeast surface display for protein engineering and characterization.
    Current opinion in structural biology 17(4): 467-473. Han, T., Sui, J., Bennett, A., Liddington, R.C., Donis, R.O., Zhu, W. & Marasco, W.A. 2012. Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem biophys res commun 409(2): 253-259.
  • Hossain, S.A. 2018. Surface display of heterologous proteins in the yeast cell wall and their application in biotechnology. Doctoral dissertation, Faculty of food technology and biotechnology, University of Zagreb, Croatia.
  • Jarjour, J., West-Foyle, H., Certo, M.T., Hubert, C.G., Doyle, L., Getz, M.M., …& Scharenberg, A.M. 2009. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic acids research 37(20): 6871 -6880.
  • Jarjour, J., West-Foyle, H., Certo, M.T., Hubert, C.G., Doyle, L., Getz, M.M., …& Scharenberg, A.M. 2009. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic acids research 37(20): 6871 -6880.
  • Kaya, M., Ito, J., Kotaka, A., Matsumura, K., Bando, H., Sahara, H., …& Kondo, A. 2008. Isoflavoneaglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillusoryzae on yeast cell surface. Applied Microbiology and Biotechnology 79(1): 51 -60.
  • Kieke, M.C., Cho, B.K., Boder, E.T., Kranz, D.M. &Wittrup, K.D. 1997.Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein engineering 10(11): 1303-1310.
  • Klis, F.M., Boorsma, A. & De Groot, P.W. 2006.Cell wall construction in Saccharomyces cerevisiaeYeast 23(3): 185-202.
  • Klis, F.M., Mol, P., Hellingwerf, K. & Brul, S. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS microbiology reviews 26(3): 239-256.
  • Kollár, R., Petráková, E., Ashwell, G., Robbins, P.W. & Cabib, E. 1995.Architecture of the yeast cell wall the linkage between chitin and β (13)-glucan. Journal of Biological Chemistry 270(3): 1170-1178.
  • Kollár, R., Reinhold, B.B., Petráková, E., Yeh, H.J., Ashwell, G.,Drgonová, J., …& Cabib, E. 1997. Architecture of the yeast cell wall β (1→ 6)-glucan interconnects mannoprotein, β (1→ 3)- glucan, and chitin. Journal of Biological Chemistry 272(28): 17762-17775.
  • Lee, H.W., Lee, S.H., Park, K.J., Kim, J.S., Kwon, M.H. & Kim, Y.S. 2006. Construction and characterization of a pseudo-immune human antibody library using yeast surface display. Biochem and biophys res commun 346(3): 896-903.
  • Levin, D.E. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189(4): 1145-1175.
  • Levy, R., Forsyth, C.M., LaPorte, S.L., Geren, I.N., Smith, L.A. & Marks, J.D. 2007. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. Journal of molecular biology 365(1): 196-210.
  • Levy, R., Forsyth, C.M., LaPorte, S.L., Geren, I.N., Smith, L.A., & Marks, J.D. 2007. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. Journal of molecular biology365(1): 196-210.
  • Li, J., Wang, Y., Liang, Y., Ni, B., Wan, Y., Liao, Z., …& Wang, S. 2009. Fine antigenic variation within H5N1 influenza virus hemagglutinin’s antigenic sites defined by yeast cell surface display. European journal of immunology 39(12): 3498-3510.
  • Lipke, P.N. & Ovalle, R. 1998. Cell wall architecture in yeast: new structure and new challenges. Journal of bacteriology 180(15): 3735-3740.
  • Magnelli, P., Cipollo, J.F. & Abeijon, C. 2002.A refined method for the determination of Saccharomyces cerevisiaecell wall composition and β-1, 6-glucan fine structure.Analytical biochemistry 301(1): 136-150.
  • Matano, Y., Hasunuma, T. & Kondo, A. 2012.Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresource technology 108: 128-133.Sk Amir Hossain, Chanchal Mandal, Toufiq Ahmed & S.M Rifat Rahman Matsumoto, T., Fukuda, H., Ueda, M., Tanaka, A. & Kondo, A. 2002. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl. Environ. Microbiol.68(9): 4517-4522.
  • Moukadiri, I. & Zueco, J. 2001.Evidence for the attachment of Hsp150/Pir2 to the cell wall of Saccharomyces cerevisiae through disulfide bridges.FEMS yeast research 1(3): 241 -245.
  • Murai, T., Ueda, M., Yamamura, M., Atomi, H., Shibasaki, Y., Kamasawa, N., …& Tanaka, A. 1997. Construction of a starch-utilizing yeast by cell surface engineering. Appl. Environ. Microbiol. 63(4): 1362-1366.
  • Nakamura, Y., Shibasaki, S., Ueda, M., Tanaka, A., Fukuda, H. & Kondo, A. 2001. Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Applied microbiology and biotechnology 57(4): 500-505.
  • Orlean, P. 1997. Biogenesis of Yeast Wall and Surface Components. Cold Spring Harbor Monograph Archive 21: 229-362.
  • Orlean, P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall.Genetics 192(3): 775-818.
  • Orr, B.A., Carr, L.M., Wittrup, K.D., Roy, E.J. &Kranz, D.M. 2003.Rapid method for measuring ScFv thermal stability by yeast surface display. Biotechnology progress 19(2): 631 -638.
  • Osumi, M. 1998. The ultrastructure of yeast: cell wall structure and formation. Micron 29(2-3): 207- 233.
  • Pagé, N., Gérard-Vincent, M., Ménard, P., Beaulieu, M., Azuma, M., Dijkgraaf, G.J., …& Sdicu, A.M. 2003. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin.Genetics 163(3): 875-894.
  • Parthasarathy, R., Subramanian, S., Boder, E.T. & Discher, D.E. 2006.Post‐translational regulation of expression and conformation of an immunoglobulin domain in yeast surface display. Biotechnology and bioengineering 93(1): 159-168.
  • Richman, S.A., Kranz, D.M., & Stone, J.D. 2009. Biosensor detection systems: engineering stable, high-affinity bioreceptors by yeast surface display. Methods MolBiol 504: 323-350.
  • Ruiz-Herrera, J. 2016.Fungal cell wall: structure, synthesis, and assembly.CRC press.
  • Shusta, E.V., Pepper, L.R., Cho, Y.K. & Boder, E.T. 2008. A decade of yeast surface display technology: where are we now? Combinatorial chemistry & high throughput screening 11(2): 127-134.
  • Szczupak, A., Kol-Kalman, D. & Alfonta, L. 2012. A hybrid biocathode: surface display of O 2- reducing enzymes for microbial fuel cell applications. Chemical Communications 48(1): 49-51.
  • Tsai, S.L., DaSilva, N.A. & Chen, W. 2012.Functional display of complex cellulosomes on the yeast surface via adaptive assembly.ACS synthetic biology 2(1): 14-21.
  • Ueda, M. & Tanaka, A. 2000.Genetic immobilization of proteins on the yeast cell surface. Biotechnology advances 18(2): 121 -140.
  • Van Antwerp, J.J. & Wittrup, K.D. 2000. Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnology progress 16(1): 31 -37.
  • Van der Vaart, J.M., Caro, L.H., Chapman, J.W., Klis, F.M. &Verrips, C.T. 1995.Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. Journal of bacteriology 177(11): 3104-3110.
  • Wang, K.C., Patel, C.A., Wang, J., Wang, J., Wang, X., Luo, P.P. & Zhong, P. 2010. Yeast surface display of antibodies via the heterodimeric interaction of two coiled-coil adapters. Journal of immunological methods 354(1-2): 11 -19.
  • Yang, N., Yu, Z., Jia, D., Xie, Z., Zhang, K., Xia, Z., …& Qiao, M. 2014. The contribution of Pir protein family to yeast cell surface display. Applied microbiology and biotechnology 98(7): 2897-2905.
  • Yue, L., Chi, Z., Wang, L., Liu, J., Madzak, C., Li, J. & Wang, X. 2008.Construction of a new plasmid for surface display on cells of Yarrowia lipolytica. Journal of Microbiological
    Methods 72(2): 116-123

Download Full Paper Here (Right-Click and Save As)