A SHORT REVIEW OF ISOINDIGO ACCEPTOR FOR CONJUGATED POLYMERIC PHOTOVOLTAICS

Shu Er Tan, Wahidah Zabidi and Mohd Sani Sarjadi*
Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
*Corresponding author: msani@ums.edu.my

ABSTRACT. This paper focussed on the recent development of conjugated polymers that contains isoindigo as acceptor moiety in the application of copolymeric solar cell. In the past decade, various modifications have been done either on the isoindigo acceptor itself or incorporated the isoindigo with different donor moieties. Recently, the power conversion efficiency (PCE) of this isoindigo-based polymeric photovoltaics have achieved up to ~7%. Hence, it is a promising acceptor for the photovoltaics and is expected to break through the recent PCE achievement in the future. This review briefly summarized the structures and properties of the isoindigo-based polymers that have been investigated by the past researches.

KEYWORD. Isoindigo; Conjugated copolymers; Polymeric solar cells; Small molecules.

 

REFERENCES:

  • Ashraf, R. S., Kronemeijer, A. J., James, D. I., Sirringhaus, H., & McCulloch, I. (2012). A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chemical Communications, 48(33), 3939. https://doi.org/10.1039/c2cc30169e
  • Braga, A. F. B., Moreira, S. P., Zampieri, P. R., Bacchin, J. M. G., & Mei, P. R. (2008). New processes for the production of solar-grade polycrystalline silicon: A review. Solar Energy Materials and Solar Cells, 92(4), 418–424. https://doi.org/10.1016/j.solmat.2007.10.003
  • Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P.L., & Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature. https://doi.org/10.1038/347539a0
  • Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p-n junction photocell for converting solar radiation into electrical power [3]. Journal of Applied Physics25(5), 676–677. https://doi.org/10.1063/1.1721711
  • Cheng, X., Wan, Q., Wu, Y., Guo, B., Guo, X., Li, Y., Zhang, M., Cui, C., & Li, Y. (2016). Toward high open-circuit voltage by smart chain engineering in 2D-conjugated polymer for polymer solar cells. Solar Energy Materials and Solar Cells. https://doi.org/10.1016/j.solmat.2016.01.017
  • Cheng, Y., Yang, S., & Hsu, C. (2009). Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews, 109(11), 5868–5923. https://doi.org/10.1021/cr900182s
  • D ’aprano, G., Leclerc, M., & Zotti, G. (1992). Stabilization and Characterization of Pernigraniline Salt: The ” Acid-Doped ” Form of Fully Oxidized Polyanilines. Macromolecules. https://doi.org/10.1021/ma00034a013
  • Darling, S. B., & You, F. (2013). The case for organic photovoltaics. RSC Adv., 3, 17633– 17648. https://doi.org/10.1039/c3ra42989j
  • de Miguel, G., Camacho, L., & García-Frutos, E. M. (2016). 7,7′-Diazaisoindigo: a novel building block for organic electronics. J. Mater. Chem. C, 4(6), 1208–1214. https://doi.org/10.1039/C5TC03464G
  • Dutta, G. K., Han, A. R., Lee, J., Kim, Y., Oh, J. H., & Yang, C. (2013). Visible-near infrared absorbing polymers containing thienoisoindigo and electron-rich units for organic transistors with tunable polarity. Advanced Functional Materials, 23(42), 5317–5325. https://doi.org/10.1002/adfm.201300536
  • Estrada, L. A., Stalder, R., Abboud, K. A., Risko, C., Bredas, J. L., & Reynolds, J. R. (2013). Understanding the electronic structure of isoindigo in conjugated systems: A combined theoretical and experimental approach. Macromolecules46(22), 8832–8844. https://doi.org/10.1021/ma4013829
  • Goetzberger, A., & Hebling, C. (2000). Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 62(1), 1–19. https://doi.org/10.1016/S0927- 0248(99)00131-2
  • Grenier, F., Berrouard, P., Pouliot, J.-R., Tseng, H.-R., Heeger, A. J., & Leclerc, M. (2012). Synthesis of new n-type isoindigo copolymers. Polymer Chemistry, 4(6), 1836–1841. https://doi.org/10.1039/C2PY20986A
  • Günes, S., Neugebauer, H., & Sariciftci, N. S. (2007). Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews, 107(4), 1324–1338. https://doi.org/10.1021/cr050149z
  • Herzog, A. V., Lipman, T. E., & Kammen, D. M. (2001). Renewable energy sources. Encyclopedia of Life . Retrieved from http://rael.berkeley.edu/old_drupal/sites/default/files/old-site-files/2001/HerzogLipman-Kammen-RenewableEnergy-2001.pdf
  • Hideki, S., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of Electrically-Conducting organic Polymers: Halogen Derivatives of Polyacatylene, (CH)x. J.C.S., Chemical Communications, (16), 1–5. https://doi.org/10.1039/c39770000578
  • Leclerc, M. (1999). Optical and electrochemical transducers based on functionalized conjugated polymers. Advanced Materials, 11(18), 1491–1498. https://doi.org/10.1002/(SICI)1521 -4095(199912)11:18<1491::AIDADMA1491>3.0.CO;2-O
  • Leclerc, M., & Faid, K. (1997). Electrical and optical properties of Processable Polythiophene Derivatives: Structure-Property relationships. Advanced Materials9(14), 1087–1094. https://doi.org/10.1002/adma.19970091404
  • Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Ade. H., & Yan, H. (2014). Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 5:5293(9), doi: 10.1038/ncomms6293. https://doi.org/10.1038/ncomms6293
  • Mei, J., Graham, K. R., Stalder, R., & Reynolds, J. R. (2010). Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells. Organic Letters, 12(4), 660–663. https://doi.org/10.1021/ol902512x
  • Morin, J.-F., Leclerc, M., Adès, D., & Siove, A. (2005). Polycarbazoles: 25 Years of Progress. Macromolecular Rapid Communications, 26(10), 761 –778. https://doi.org/10.1002/marc.200500096
  • Neher, D. (2001). Polyfluorene homopolymers: Conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromolecular Rapid Communications. https://doi.org/10.1002/1521 -3927(20011101)22:17<1365::AIDMARC1365>3.0.CO;2-B
  • Rand, B. P., Genoe, J., Heremans, P., & Poortmans, J. (2007). Solar Cells Utilizing Small Molecular Weight Organic Semiconductors. Prog. Photovolt: Res. Appl., 15(February 2013), 659–676. https://doi.org/10.1002/pip
  • Rehahn, M., Schlüter, A. D., Wegner, G., & Feast, W. J. (1989). Soluble poly(paraphenylene)s. 2. Improved synthesis of poly(para-2,5-di-n-hexylphenylene) via Pdcatalysed coupling of 4-bromo-2,5-di-n-hexylbenzeneboronic acid. Polymer. https://doi.org/10.1016/0032-3861(89)90079-7
  • Sathiyan, G., Sivakumar, E. K. T., Ganesamoorthy, R., Thangamuthu, R., & Sakthivel, P. (2016). Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Letters, 57(3), 243–252. https://doi.org/10.1016/j.tetlet.2015.12.057
  • Scharber, M. C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J., & Brabec, C. J. (2006). Design rules for donors in bulk-heterojunction solar cells Towards 10 % energy-conversion efficiency. Advanced Materials, 18(6), 789–794. https://doi.org/10.1002/adma.200501717
  • Sonar, P., Tan, H.-S., Sun, S., Lam, Y. M., & Dodabalapur, A. (2013). Isoindigo dye incorporated copolymers with naphthalene and anthracene: promising materials for stable organic field effect transistors. Polymer Chemistry, 4(6), 1983. https://doi.org/10.1039/c2py20942j
  • Stalder, R., Mei, J., Graham, K. R., Estrada, L. a, & Reynolds, J. R. (2013). Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics. Chemistry of Materials, 26(1), 664–678. https://doi.org/10.1021/cm402219v
  • Stalder, R., Mei, J., & Reynolds, J. R. (2010). Isoindigo-based donor-acceptor conjugated polymers. Macromolecules, 43(20), 8348–8352. https://doi.org/10.1021/ma1018445
  • Stalder, R., Mei, J., Subbiah, J., Grand, C., Estrada, L. A., So, F., & Reynolds, J. R. (2011). n-Type Conjugated Polyisoindigos. Macromolecules, 44(16), 6303–6310. https://doi.org/10.1021/ma2012706 Tang, W. C. (1986). Two-layer Organic Photovoltaic Cell, 48(2), 183–185.
  • Wang, E., Ma, Z., Zhang, Z., Henriksson, P., Inganäs, O., Zhang, F., & Andersson, M. R. (2011a). An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. Chemical Communications, 47(17), 4908. https://doi.org/10.1039/c1cc11053e
  • Wang, E., Ma, Z., Zhang, Z., Vandewal, K., Henriksson, P., Inganäs, O., Zhang, F. & Andersson, M. R. (2011 b). An Easily Accessible Isoindigo-Based Polymer for HighPerformance Polymer Solar Cells. Journal of the American Chemical Society, 133(36), 14244–7. https://doi.org/10.1021/ja206610u
  • Wang, E., Mammo, W., & Andersson, M. R. (2014). 25th anniversary article: Isoindigobased polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Advanced Materials, 26(12), 1801 –1826. https://doi.org/10.1002/adma.201304945
  • Watanabe, A., Murakami, S., Mori, K., & Kashiwaba, Y. (1989). Electronic properties of polypyrrole/n-Si heterojunctions and polypyrrole/metal contacts. Macromolecules22(11), 4231–4235. https://doi.org/10.1021/ma00201a016
  • Wohrle, B. D., & Meissner, D. (1991). Organic Solar Cells, 3, 129–138.
  • Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer Photovoltaic Cells – Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science, 270(5243), 1789–1791. https://doi.org/10.1126/science.270.5243.1789
  • Zhang, G., Fu, Y., Xie, Z., & Zhang, Q. (2011). Synthesis and Photovoltaic Properties of New Low Bandgap Isoindigo-Based Conjugated Polymers. Macromolecules, 44(6), 1414–1420. https://doi.org/10.1021/ma102357b
  • Zhang, S., Ye, L., Zhao, W., Yang, B., Wang, Q., & Hou, J. (2015). Realizing over 10% efficiency in polymer solar cell by device optimization. Science China Chemistry58(2), 248–256. https://doi.org/10.1007/s11426-014-5273-x
  • Zhou, H., Yang, L., & You, W. (2012). Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules, 45(2), 607–632. https://doi.org/10.1021/ma201648t

Download Full Paper Here (Right-Click and Save As..)