# FUZZY INTERPOLATION RATIONAL BICUBIC BEZIER SURFACE

Rozaimi1* Zakaria, Abd Fatah2 Wahab, R.U. Gobithaasan2, Isfarita3 Ismail
1Faculty Science and Natural Resources,
Universiti Malaysia Sabah (UMS),
Kota Kinabalu, Sabah.
2School of Informatics and Applie d Mathematics,
3Institute of Oceanography and Environment,
Universiti Malaysia Terengganu, Malaysia.
Corresponding author’s email: rozaimi@ums.edu.my (Tel: 088-320000 ext: 5628,Fax: 088-320223)

ABSTRACT. This paper introduces fuzzy interpolation rational bicubic Bezier surface (later known as FIRBBS) which can be used to model the fuzzy data forms after defining uncertainty data by using fuzzy set theory. The construction of FIRBBS is based on the definition of fuzzy number concept since we dealing with the real uncertainty  data form and interpolation rational bicubic Bezier surface model. Then, in order to obtain the crisp fuzzy solution, we applied the alpha-cut operation of triangular fuzzy number to reduce the fuzzy interval among those fuzzy data points(FDPs). After that, we applied defuzzification method to give us the final solution of getting single surface which also knows as crisp fuzzy solution surface. The practical example also is given which represented by figures for each processes. This practical example take the fuzzy data of lakebed modeling based on uncertainty at z-axis(depth).

KEYWORD. Fuzzy number, rational bicubic Bezier surface, interpolation, alpha-cut, defuzzification.

REFERENCES:

• Farin, G. 1999. NURBS for Curve and Surface Design: from Projective Geometry to Practical Use. 2nd ed: AK Peters, Ltd.
• Farin, G. 2002. Curves and Surfaces for CAGD: A Practical Guide. 5th ed. USA: Academic Press.
• Hussain, M. Z. & Hussain, M. 2006a. Visualization of Data Subject to Positive Constraints. Journal of Information and Computing Sciene 1-2 (27):397-410.
• Hussain, M. Z. & Hussain, M. 2006b. Visualization of Surface Data Using Rational Bicubic Spline. Journal of Mathematics 38:85-100.
• Hussain, M. Z. & Hussain, M. 2007. Visualization of 3D data preserving convexity. Journal of Applied Mathematics & Computing 23 (1-2):397-410.
• Klir, G. J. & B.Yuan. 1995. Fuzzy Sets and Fuzzy Logic: Theory and Application. New York: Prentice Hall.
• Klir, G. J., Clair, U. S. & Yuan, B. 1997. Fuzzy Set Theory: Foundation and Application. New Jersey: Prentice Hall.
• Sarfraz, M., Habib, Z. & Hussain, M. 1998. Piecewise interpolation for designing of parametric curves. Paper read at Proceedings of an IEEE Conference on Information Visualization, 29-31 July 1998, at London.
• Wahab, A. F. 2008. Pemodelan Geometri Menggunakan Teori Set Kabur, School of Mathematics, Universiti Sains Malaysia.
• Wahab, A. F. & Zakaria, R. 2015. Fuzzy tuning B-spline curve. AIP Conference Proceedings, 1691(040026).
• Zadeh, L. 1965. Fuzzy Sets. Information and Control 8:338-353.
• Zakaria, R. & Wahab, A. F. 2013. Fuzzy Set Theory in Modeling Uncertainty Data via Interpolation Rational Bezier Surface Function. Applied Mathematical Sciences, 7(45), 2229-2238.
• Zakaria, R. & Wahab, A. F. 2014. Pemodelan Titik Data Kabur Teritlak. Sains Malaysiana 43 (5):799-805.
• Zakaria, R., Wahab, A. F. & Gobithaasan, R. U. 2016. The Series of Fuzzified Fuzzy Bezier Curve. Jurnal Teknologi, 78(2-2), 103-107.
• Zakaria, R., Wahab, A. F. & Gobithaasan, R. U. 2014. Fuzzy B-Spline Surface Modeling. Journal of Applied Mathematics 2013 (Article ID 285045):8 Pages.
• Zimmermann, H.-J. 1985. Fuzzy Set Theory and Its Applications. USA: Kluwer Academic

Download Full Paper Here (Right-Click and Save As.. )