OPTIMIZATION OF ENZYMATIC HYDROLYSIS OF BLOOD COCKLE (Anadara granosa) USING ALCALASE®

*Amiza, M. A. & Masitah, M.

Department of Food Science,
Faculty of Agrotechnology and Food Science,
Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.

ABSTRACT. The objective of this study is to establish the optimum hydrolysis conditions for blood cockle (Anadara granosa) using Alcalase® employing response surface methodology (RSM). A three-level face-centered central composite design (CCD) was adapted in the study. The effects of temperature (45-65oC), pH (7.5-9.5), ratio of enzyme to substrate level (1-2%) and hydrolysis time (60-180 minutes) were studied in order to obtain the optimum degree of hydrolysis. The optimal conditions for enzymatic hydrolysis of blood cockle were found to be at 65oC, pH of 9.5, enzyme concentration at 2% and hydrolysis time of 180 minutes. The enzymatic hydrolysis of cockles gave a quadratic fit with the experimental data. Under these optimum conditions, the predicted value for degree of hydrolysis was 34.05%, while the actual experimental data was 37.27%. The lyophilized blood cockle hydrolysate was composed of 8.59% water, 74% protein, 5.80% fat, 10.22% ash and 1.39% carbohydrate.

KEYWORDS. Alcalase®, blood cockle, degree of hydrolysis, optimization

REFERENCES:

  • Adler-Nissen, J. 1986. Determination of the Degree of Hydrolysis of Food Protein Hydrolysates by Trinitobenzene Sulfonic Acid. Journal of Agricultural and Food Chemistry, 27: 1256-126.

  • Amiza, M. A., Nurul Ashikin, S., & Faazaz A. L. 2011. Optimization of Enzymatic Protein Hydrolysis from Silver Catfish (Pangasius sp.) Frame. International Food Research Journal, 18: 751-757.

  • AOAC. 2002. Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Washington DC.

  • Arvanitoyannis, I. S., & Kassaveti, A. 2008. Fish Industry Waste: Treatments, Environmental Impacts, Current and Potential Uses. International Journal of Food Science and Technology, 43: 726-745.

  • Azizah A. H., Jamilah, B., & Gan, H. B. 2001. Nutritional Quality of Spray Dried Protein Hydrolysate from Black Tilapis (Oreochromis mossambicus). Food Chemistry, 78: 69-74.

  • Basu, S. & Gupta, S. 1984. Study on the Ice-Storage of Blood Clam (Anadara granosa) Meat. Fish Technology, 21: 6.

  • Benjakul, S. & Morrissey, M. T. 1997. Protein Hydrolysate from Pasific Whiting Solid Waste. Journal of Agricultural and Food Chemistry, 61 (1/2): 131-138.

  • Bhaskar, N. & Mahendrakar, N. S. 2008. Protein Hydrolysate from Visceral Waste Protein of Catla (Catla catla): Optimization of Hydrolysis Conditions for Commercial Neutral Protease. Bioresource Technology, 99 (10): 4105-4111.

  • Department of Fisheries Malaysia. 2009. Official Homepage of Department of Fisheries Malaysia. Annual Fisheries Statistics 2009. Available from: http://www.dof.gov.my/c/document_library/get_file?uuid=fa4a0162-c201-42bb-bb57-6ca3e4242b06&groupId=172176 [Accessed on 29 Sept 2011].

  • Dong, M. F. 2001. The Nutritional Value of Shellfish. Available at: www.wsg.washington.edu.,p.1-8.

  • Haslaniza, H., Maskat, M. Y., Wan Aida, W. M., & Mamot, S. 2010. The Effect of Enzyme Concentration, Temperature and Incubation Time on Nitrogen Content and Degree of Hydrolysis of Protein Precipitate from Cockle (Anadara granosa) Meat Wash Water. International Food Research Journal, 17: 147-152.

  • Hordur, G. K., & Barbara, A. R. 2000. Kinetics of the Hydrolysis of Atlantic Salmon (Salmo salar) Muscle Hydrolyzed with Various Alkaline Protease and a Visceral Protease Mixture. Process of Biochemistry, 24: 177-187.

  • Hoyle, N., & Merrit, J. H. 1995. Quality of Fish Protein Hydrolysate from Herring. Journal of Food Science, 59: 4769-4774.

  • Ibrahim, N. 1995. Trace Element Content of Malaysian Cockles (Anadara granosa). Food Chemistry, 54: 133-135.

  • Izura, S. N. & Hooi, T. K. 2008. Shaping the Future of Cockles Industry in Malaysia. Available from: http://www.seafdec.org.my. [Accessed on 1st September 2009].

  • Koh, S. M., Koh, P. K., Sim, K. T., Lee, Y. K., & Salmiah, S. 2011. Proximate Analysis and Heavy Metal Concentrations of Tissue of Cockles (Anadara granosa) from Several Cockle Farms in Peninsular Malaysia. Sains Malaysiana, 40 (2): 139-146.

  • Liceaga-Gesualdo, A. M., & Li-Chan, E. C. 1999. Functional Properties of Fish Protein Hydrolysate from Herring (Clupea harangus). Journal of Food Science, 64: 1000-1004.

  • Madamba, P. S. 2002. The Response Surface Methodology: An Application to Optimize Operation of Selected Agricultural Crops. Learning With Technology: Food Science and Technology, 35: 584-592.

  • Mirsadeghi, S. A., Zakaria, M. P., Yap, C. K., & Shahbazi, A. 2011. Risk Assessment for the Daily Intake of Polycyclic Aromatic Hydrocarbons from the Ingestion of Cockle (Anadara granosa) and Exposure to Contaminated Water and Sediments Along the West Coast of Peninsular Malaysia. Journal of Environmental Sciences, 23 (2): 336-345.

  • Myers, R. H. & Montgomery D. C. 2002. Response Surface Methodology. New York: John Wiley & Sons Inc. Pp. 798.

  • Nielsen P. M. 1997. Functionality of Protein Hydrolysate in: Damodaran S, Paraf A, Editors. Food Proteins and their Applications. New York: Marcel Dekker Inc. p 443-72.

  • Nilsang, S., Lertsiri, S., Suphantharika, M., & Assavanig, A. 2005. Optimization of Enzymatic Hydrolysis of Fish Soluble Concentrate by Commercial Proteases. Journal of Food Engineering, 70: 571–578.

  • Nurjanah, Z., & Kustiyariyah. 2005. Kandungan Mineral dan Proksimat Kerang Darah (Anadara granosa) yang diambil dari Kabupaten Boalemo, Gorontalo. Buletin Teknologi Hasil Perikanan VIII (2) FPIK IPB.

  • Nur Nadia, A. A., Azrina, A., & Amin, I. 2011. Proximate Composition and Energetic Value of Selected Marine Fish and Shellfish from the West Coast of Peninsular Malaysia. International Food Research Journal, 18: 137-148.

  • Normah., Jamilah, B., Saari, N., & Che Man Yaakob, B. 2005. Optimization of Hydrolysis Conditions for the Production of Threadfin Bream (Nemipterus Japonicus) Hydrolysate by Alcalase. Journal of Muscle Foods, 16: 87-102.

  • Onodelanore, A. C. & Shahidi, F. 1996. Protein Dispersions and Hydrolysates from Shark (Isurus oxyrinchus). Journal of Aquatic Food Product Technology, 5: 43-59.

  • Wasswa, J., Tang, J., & Xiao, H. G. 2008. Optimization of the Production of Hydrolysates from Grass Carp (Ctenopharyngodon idella) Skin using Alcalase. Journal of Food Biochemistry, 32: 460-473.

Download Full Paper Here (right click and save as)