SORPTION AND CHARACTERIZATION STUDIES OF ACTIVATED CARBON PREPARED FROM POLYETHYLENE TEREPHTHALATE (PET)

Collin G. Josepha*, S.M. Anisuzzamanb, Pak Yan Moha, E-W Amy Lima
aWater Research Unit, Faculty of Science and Natural Resources,
Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia.
bChemical Engineering Program, Faculty of Engineering,
University Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia.
*Corresponding author. Tel.: +6 088 320000 ext. 2117; Fax: + 6 088 435324; e-mail: collin@ums.edu.my

ABSTRACT. A series of activated carbons (ACs) were prepared from cut pieces of polyethylene terephthalate (PET) via semi-carbonization followed by physical activation using a two-stage self-generated atmosphere method. The best AC was obtained by using a temperature of 700°C and 5 hours of carbonization period. The percentage yield decreased with increasing activation temperature, whereas the activation time did not have a significant effect on the yield. With a moisture content and ash content of less than 10% and 1% respectively, this material was suitable for AC production. The BET surface area was measured at 515.41 m2/g, with a Type I isotherm and an H4-type adsorption hysteresis loop concurring that the AC was a microporous solid with chemisorption properties.

KEYWORDS. Activated carbon (AC), 2,5-dichlorophenol (2,5- DCP), polyethylene terephthalate (PET), physical activation

REFERENCES:

  • Abiko, H., Furuse, M. & Takano, T. 2010. Reduction of adsorption capacity of coconut shell activated carbon for organic vapors due to moisture contents. Industrial Health 48(4): 427-437.
  • Abuzaid, S.N. & Nakhla, G.F. 1996. Effect of solution pH on the kinetics of phenolics uptake on granular activated carbon. Journal of Hazardous Materials 49(2): 217-230.
  • Ahmad, A.L., Loh, M.M. & Aziz, J.A. 2007. Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption. Dyes and Pigments 75 (2): 263-272.
  • Beswick, R.H & Dunn, D.J. 2002. Plastic in Packaging – Western Europe and North America. United Kingdom: Smithers Rapra Technology, 14.
  • Bouchelta, C., Medjram, M.S., Bertrand, O. & Bellat J.P. 2008. Preparation and characterization of activated carbon from date stones by physical activation with steam. Journal of analytical and applied pyrolysis 82 (1): 70-77.
  • Cao, Q., Xie, K.C., Lv Y.K & Bao W.R. 2006. Process effects on activated carbon with large specific surface area from corn cob. Bioresource Technology 97(1): 110-115.
  • Esfandiari, A., Kaghazchi, T. & Soleimani, M. 2012. Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. Journal of the Taiwan Institute of Chemical Engineers 43(4): 631-637.
  • Husseien, M., Amer, A.A. & El-Maghraby, A. 2007. Utilization of barley straw as a source of a activated carbon for removal of methylene blue from aqueous solution. Journal of Applied Sciences Research 3:1352-1358.
  • Jagtoyen, M., Thwaites, M.J & Stencel, B. 1992. Adsorbent carbon synthesis from coals by phosphoric acid activation. Carbon 30(7): 1089-1096.
  • Joseph, C. G., Li Puma, G. & Bono, A. 2011. Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2,4,6-trichlorophenol. Desalination 276(1-3): 303-309.
  • Karthikeyan, S., Sivakumar, P. & Palanisamy, P.N. 2008. Novel activated carbons from agricultural wastes and their characterization. Journal of Chemistry 5(2): 409-426.
  • László, K., Bóta, A. & Nagy, L.G. 1999. Porous carbon from polymer waste materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 151(1): 311-320.
  • László, K. & Szùcs, A. 2001. Surface characterization of polyethyleneterephthalate (PET) based activated carbon and the effect of pH on its adsorption capacity from aqueous phenol and 2,3, 4-trichlorophenol solutions. Carbon 39(13): 1945-1953.
  • Lua, A.C. & Yang, T. 2004. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. Journal Colloid and Interface Science 274 (2): 594-601.
  • Mestre, A.S., Pires, J., Nogueira, J.M., Parra, J.B., Carvalho, A.P. & Ania, C.O. 2009. Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure. Bioresource Technology 100 (5): 1720-1726.
  • Nakagawa, K., Mukai, S.R. & Suzuki, T. 2003. Gas adsorption on activated carbons from PET mixtures with a metal salt. Carbon 41(4): 823-831.
  • Raveendran, K., Ganes, A. & Khilart, K.C. 1995. Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12): 1812-1822.
    SIRIM Method. 1984. Specification of powdered activated carbons. Standard and Industrial Research Institute of Malaysia, 873.
  • Sudaryanto, Y., Hartono, S.B. & Irawaty, W. 2006. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresource Technology 97(5): 734-739.
  • Sun, K. & Jian, C.J. 2010. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass and Bioenergy 34(4): 539-544.
  • Tatiya, R.R. 2010. Elements of Industrial Hazards- Health, Safety, Environment and Loss Prevention. CRC Press,105-120.
  • Tsai, W.T., Chang, C.Y. & Wang, S.Y. 2001. Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2. Bioresource Technology 78 (2): 203-20 .
  • Weber, W.J. 1972. Physicochemical processes for water quality control. United States: John Wiley and Sons, 236.
  • Yang, T. & Lua, A.C. 2003. Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. Journal of Colloid and Interface Science 267(2): 408-417.

Download Full Paper Here (Right-Click and Save As.. )