
BORNEO SCIENCE 35: SEPTEMBER 2014

CROWD SIMULATION BASED ON FLOCKING BEHAVIOUR ON PARALLEL

CUDA PLATFORM

Norhafiza Hamzah*, Norsuzila Yusof & Z.A.Omar

School of Science and Technology,

Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

*hafiza@ums.edu.my

ABSTRACT. This research is focused on flocking behaviour algorithm to simulate the crowd

on parallel GPU using CUDA technology. The analysis of frame rates is conducted to

compare the crowd simulation on parallel GPU platform and on a single processor. The result

shows that the crowd simulation on a parallel GPU platform is 15 frames per second for 16,

384 characters. This result is equivalent with the number of frames per second for crowd

simulation on a single processor with 576 characters. Thus, the results demonstrate that

crowd simulation is more efficient on the parallel GPU platform especially for the large scale

data.

KEYWORDS: Crowd simulation; Flocking behaviour; GPU computing; CUDA

INTRODUCTION

Crowd simulation is one of focus and became one of the important research areas in computer

graphics, virtual reality, social sciences and civil engineering (Jiang et al, 2010). Simulation

is the movement of large crowds of objects or characters within the same physical

environment, and commonly shares the same purpose, and has its own behaviour, while crowd

movement includes a number of different agents to move freely in the same environment,

targeting, and destination direction (Saboia & Goldenstein, 2012).

Flocking behaviour algorithms first introduced by Craig Reynolds in 1987 and

Reynolds introduced the word boid to refer to the entity bird (Serrano, 2011). According to

Reynolds (2006), the relative motion and the throngs of group and flocking behaviour is often

modeled as interacting systems of particles. Flocking behaviour algorithm has three

fundamental behaviours: the separation, cohesion and alignment.

CUDA is a parallel computing platform and programming model invented by NVIDIA. It

enables dramatic increases in computing performance by harnessing the power of the graphics

processing unit (GPU). Scientists and researchers are finding broad-ranging uses for GPU

computing with CUDA such as analyze air traffic flow and visualized nanoscale molecules.

While being an important tool to enable a faster modeling of problems to a more general

parallel machine concept, CUDA abstracted hardware still is very specialized, carrying a

different memory model, with huge impacts on the performance of the developed application,

depending on its memory access patterns (Passos et al., 2008).

34

mailto:hafiza@ums.edu.my

Norhafiza Hamzah, Norsuzila Yusof & Z.A. Omar

MATERIALS AND METHODS

In this research, crowd simulation algorithm is developed based on flocking behaviour and

two additional behaviours such as avoidance and target. The first step to implement the

behaviour is to identify the separation of each agent’s ability to defend the distance between

other agents within a certain radius of the agent environment. Second, the cohesion of the

behaviour of the chief determinants or drivers that provide interesting attraction based on the

average position of each agent in the agent nearby. Third, the alignment is the steering

behaviour that causes entities to attempt to match their directional heading with those of its

neighbours. Fourth, avoidance refers to the avoidance of a static target in the global space.

The last behaviour is target which attracting the character to a specific location in the global

space.

The steps to implement the serial crowd simulation on the parallel GPU platform using

CUDA are by identify the host (CPU), the device (GPU), and which data to be parallelized.

Next, the data will be sent to the device to be distributed as threads based on the number of

prescribed block dimension. In this research, the number of characters or points used is

represented the number of the thread. All the threads execute the same instruction. Then, the

data will be sent back to the host for rendering process. openGL and glut library are used to

render the data. The crowd simulation is visualized based on point in OpenGL. At this stage,

the interoperability of OpenGL and CUDA is very important to render the data as the position,

speed and direction of every point is updated for every timestep. CUDA

GraphicsMapResources() is used to map the vertex buffer object represented by point position

to CUDA memory pointer. This process allows the vertex buffer object to be sent to the CUDA

kernel, and point position is updated based on the defined behaviour. vertex buffer object is

then released from pointer device using cudaGraphicsUnmapResources() function to execute

common OpenGL rendering using glDrawArray() function. The process is shown in Figure 1.

35

Crowd Simulation Based on Flocking Behaviour on Parallel Cuda Platform

Figure 1: Simulation rendering process through the interoperability of OpenGL with
CUDA using vertex buffer object (VBO).

RESULTS AND DISCUSSION

The crowd simulation based on flocking behaviour is examined using gDEBugger software

on a personal computer with Intel Core i5, Quad CPU processor, 2 GB RAM, and NVIDIA

GeForce GT520M Grapics card with 48 CUDA cores. gDEBugger is used to analyzed the

frame rates or frames per second for both simulation on parallel GPU and on a single CPU.

Then the results were represented in graphs as shown in Figure 2 and Figure 3.

Based on Figure 2, the computational of flocking behaviour is fully computed on the

single CPU to obtain the frame rates of the CPU, while the frame rates of the GPU is obtained

by sending the data to the device (GPU) and the result is sent back to the host (CPU). The

graph shows that the number of frames per second on the GPU is more efficient than the

number of frames per second on the CPU. The difference of the frame rates between GPU and

single CPU is very significant from the first second. Figure 3 shows the result of frame rates

for 16, 384 points. The maximum frame per second is reduced to 15 but still the performance

of the GPU was much better than a single CPU.

36

Identify vertex buffer object

(VBO)

Mapping OpenGL VBO
cudaGraphicsMapResources()

Kernel launching

Release VBO from pointer device
cudaGraphicsUnmapResources()

OpenGL display
glDrawArrays()

c

Norhafiza Hamzah, Norsuzila Yusof & Z.A. Omar

Figure 2: Number of frames per second for GPU and single CPU with 576 points.

Figure 3: Number of frames per second for GPU and single CPU with 16, 384 points.

CONCLUSION

The comparison of frame rates for simulation on GPU and single CPU to analyze the

performance shows that the performance of the GPU implementation by-passed the CPU and

sustained interactive frame rates for 16, 384 points. Thus, the execution time of simulation

rendering process for a large scale data can be reduced.

37

0

20

40

60

80

100

120

0 10 20 30 40

CPU

GPU

time (s)

fr
am

es
 p

er

0

2

4

6

8

10

12

14

16

0 10 20 30

GPU

fr
am

e
s

p
e

r
se

co
n

d

time (s)

Crowd Simulation Based on Flocking Behaviour on Parallel Cuda Platform

REFERENCES

Jiang, H., Xu, W., Mao, T., Li, C., Xia, S. & Wang, Z. 2010. Continuum crowd simulation in

complex environments. Computers & Graphics, 34(5): 537-544.

Reynolds, C. 2006. Big fast crowds on PS3. Proceedings of the 2006 ACM SIGGRAPH

symposium on Videogames. Boston, Massachusetts: ACM, (pp.113-121).

Saboia, P. & Goldenstein, S. 2012. Vis Comput. Crowd simulation:applying mobile grids to

the social force model, pp.1039-1048.

Serrano, M. I. 2011. Flock Implementation for the Blender Game Engine. The Florida State

University.

Passos, E., Joselli, M., Zamith, M., Rocha, J., Clua, E., Montenegro, A., Conci, A. & Feijó, B.

2008. Supermassive crowd simulation on GPU based on emergent behavior.

Proceedings of the Seventh Brazilian Symposium on Computer Games and Digital

Entertainment (SBGames’08), Sciedade Brasileira de Computação, SBC, pp.70-75.

38

