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ABSTRACT. In this study, we derive an unconditionally implicit finite difference 

approximation equation from the discretization of the one-dimensional linear time fractional 

diffusion equations by using the Caputo’s time fractional derivative. Then this approximation 

equation hence will be used to generate the corresponding system of linear equations. The 

approximation solution of the linear system is described via the implementation of Successive 

Over-Relaxation (SOR) iterative method. An example of the problem is presented to illustrate 

the effectiveness of SOR method. The findings of this study show that the proposed iterative 

method is superior compared with the Gauss-Seidel iterative method. 

 

KEYWORDS. Caputo’s fractional derivative, Implicit Finite Difference Scheme, SOR 
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INTRODUCTION 

 

Presently, a lot of in modeling of diffusion processes is found in the natural world. Therefore, 

fractional partial differential equations (FPDEs) have attracted many researchers from various 

fields (Mainardi, 1997; Diethelm & Freed, 1999; Liu, et al., 2004; Meerschaert, et al., 2004) 

to study the numerical and/or analytical solutions of the problems. For instance, a fractional 

derivative replaces the first-order time partial derivative in a diffusion model and lead to 

slower diffusion (Mainardi, 1997). For a one-dimensional diffusion model with constant 

coefficients, analytical solutions are available using. 

 For the numerical solution of the fractional diffusion equations (FDE), many proposed 

methods have been initiated such as transform methods (Mainardi, 1997; Chaves, 1998; 

Agrawal, 2002), finite elements together with the method of lines (Liu, et al., 2004, El-

Kahlout, 2008), explicit and implicit finite difference methods (Liu, et al., 2006; Meerschaert, 

et al., 2004; Shen, et al., 2005, Diego, 2008; Sweilam, et al., 2012). Even though the explicit 

methods are conditionally stable, this finite difference schemes are available in the literature, 

(Yuste, et al., 2005; Yuste, 2006).  

In this paper, the main objective is to get numerical solutions of the one-dimensional 

time fractional parabolic partial differential equation (TPPDE’s) iteratively in which the 

TPPDE’s problem can be defined as 
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Before constructing the discrete equation of Eq. (1.1) in order to get its numerical solutions, 

the following are some basic definitions for fractional derivatives which are used in the 

paper. 
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Definition 1. (Zhang, 2009) The Riemann-Liouville fractional integral operator, J of order-

  is defined as 
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Definition 2. (Zhang, 2009) The Caputo’s fractional partial derivative operator, D  of order 

-  is defined as 
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with ,1 mm   mN, 0x  

  

 

According to previous studies, many studies have been conducted to show the 

efficiency of the SOR method (Youssef, 2012; Sun, 2005; Starke, et al., 1991; Hadjidimos, 

2000). However, there is no SOR method in the literature for solving Time-Fractional 

Diffusion equation. Therefore this paper attempts to investigate the Full-Sweep Successive 

Over-Relaxation (FSSOR) iterative method which is compared with the Full-Sweep Gauss-

Seidel (FSGS) iterative method for solving Problem (1.1) with variable coefficients. To prove 

the efficiency of this method, we use the usual Caputo’s implicit finite difference 

approximations for the non-local fractional derivative operator, which is first order consistent 

and unconditionally stable for Problem (1.1) with Dirichlet boundary conditions. According 

to Problem (1.1), we restrict our attention to the finite space domain  x0 , with 10   

and the parameter   refers to the fractional order of time derivative. For simplicity, we also 

assume the initial and boundary conditions of Problem (1.1) given as  

 ,tg)t,(U 00    ,tg)t,(U 1                                            

and the initial condition 

                ,xf,xU 0 .                                  

where    ,tg,tg 10 and  ,xf are given functions. To discretize the the time fractional 

derivative in Eq. (1.1), we consider Caputo’s fractional partial derivative of order , defined 

by (Zhang, 2009; Young, 1954; Young, 1972), 
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The organisation of the paper is as follows: In Section 2, an approximate formula of 

the fractional derivative and numerical procedure for solving time fractional diffusion 

equation (1.2) by means of the implicit finite difference method are given. In Section 3, 

formulation of the FSSOR iterative method will be discussed in Section 4 shows numerical 

experiment and conclusion is given in Section 5. 

 

Caputo’s Finite Difference Approximation 

We introduce the basic ideas for the numerical solution of the time fractional diffusion 

equation (1.1) by implicit finite difference in this section. For some positive integers m and n, 

the grids sizes in space and time directions for the finite difference algorithm are defined as  

m
xh

0
  and 

n

T
tk  respectively.  The grids point in the space interval  ,0  are the 

numbers ,ihxi  m,...,,,i 210 and the grid points in the time interval  T,0  are labeled 
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,jkt j  ,...,.,,j 210 The values of the function )t,x(U  a at the grids point are denoted 

)t,x(UU jij,i  .  

 A discrete approximation to the fractional derivative (1.3) can be obtained by a simple 

quadrature formula as follows (Zhang, 2009): 
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Let us define 
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Then the discrete approximation of Eq.(2.1) 
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Hence, Eq.(2.2) can be indicated as 
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and the first order approximation method for the computation of Caputo’s fractional partial 

derivative is then stated  as the following expression 
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 Using Eq. (2.3) and the implicit finite difference discretization scheme, the discrete 

equation of Problem (1.1) to the grid point centered at ),nk,ih()t,x( ji  is given as 
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for i=1,2...,m-1. 

 

 Thus, according to Eq. (2.4), the approximation equation is known as the fully 

implicit finite difference approximation equation which is consistent first order accuracy in 

time and second order in space. For simplicity, Eq.(2.4) for 2n  can be rewritten as  
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METHODOLOGY 

 

Based on the tridiagonal linear system in Eq. (2.6), it is clear that the characteristic of its 

coefficient matrix has large scale and sparse. Actually, the concept of various iterative 

methods has been initiated and conducted by many researchers such as, Young (Young, 

1954; Young, 1971; Young, 1972), Hackbusch (Hackbusch, 1995), Saad (Saad, 1996), Evans 
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(Evans, 1985), Yousif and Evans (Yousif, et al., 1995), and Othman and Abdullah (Othman, 

et al., 2000). To solve the tridiagonal linear system, Young (Young, 1954; Young, 1971; 

Young, 1972), initiated Successive Over-Relaxation (SOR) method, which is the most known 

and widely used iterative techniques to solve in solving any linear systems.  Due to the 

advantages of FSSOR method, let the coefficient matrix A in (2.6) be expressed as 

summation of the three matrices 

VLDA                 (3.1) 

where D, L and V are diagonal, lower triangular and upper triangular matrices respectively.  

Thus, SOR iterative method can be defined generally as 
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where  kU
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represents an unknown vector at k
th

 iteration. The implementation of the SOR 

iterative method can be described in Algorithm 1. 

 

Algorithm 1: SOR method 
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iii. Convergence test. If the convergence criterion i.e. 
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is satisfied, go to Step (iv). 

Otherwise go back to Step (ii). 

 

iv. Display approximate solutions. 

 

 

RESULT AND DISCUSSION 

 

In order to verify the effectiveness of the Full-Sweep Gauss-Seidel (FSGS) and Full-Sweep 

Successive Over-Relaxation (FSSOR) iterative methods, one example of the time fractional 

diffusion equation was tested. In comparison, three criteria will be considered for both 

iterative methods such as number of iterations (K), execution time (second) and maximum 

absolute error at two different values of α = 0.50 and α = 0.75. During the implementation of 

the point iterations, the convergence test considered the tolerance error,  = 1010 .  

 

Examples 1: 

Let us consider the following time fractional initial boundary value problem (Ali S et al, 

2013) 
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and the initial condition 

               20 x,xU  .                                            (4.2b) 

From Problem (4.1), as taking 1 , it can be seen that Equation (4.1) can be reduced to the 

standard diffusion equation  
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with the initial and boundary conditions 
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Examples 2: 

Let us consider the following time fractional initial boundary value problem (Ali S et al, 

2013) 
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where the boundary conditions are given in fractional terms 
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and the initial condition 

               20 x,xU  .                                              

(4.5b) 

From Problem (4.4), as taking 1 , it can be seen that Equation (4.4) can be reduced to the 

standard diffusion equation  

 
   

0,0,
,

2

1,
2

2
2 









tx

x

txU
x

t

txU
 ,                                                  (4.6)                  

Then the analytical solution of Problem (4.6) is obtained as follows  
textxU 2),(   

Now by applying the series  

  

























1

0 1

1

0
1

00m

n n

inm

i
imn

imnn

n

n

)in(

t

t

),x(U

!n

t

t

),x(U
)t,x(U   

to )t,x(U for ,10   it can be shown that the analytical solution of Problem (4.4) is given 

as 

            
















 ...

)13()12()1(
1),(

32
2



 ttt
xtxU  

All results of numerical experiments for Problem (4.1) and Problem (4.2), obtained 

from implementation of FSGS and FSSOR iterative methods are recorded in Table 1 and 

Table 2 at different values of mesh sizes, M = 256, 512, 1024, 2048 and 4096. 
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Table 1. Comparison of Number Iterations (K), The Execution Time (Seconds) and 

Maximum Errors for the iterative methods using example at 75.0,50.0 . 

 

M 

 

Method 

α = 0.50 α = 0.75 

K 

(Number 

Iterations) 

Time 

(Second) 

Max 

Error 

K 

(Number 

Iterations) 

Time 

(Second) 

Max 

Error 

256 FSGS 230579 1.46 7.6181e-6 282947 1.99 5.3418e-7 

FSSOR 1552 0.01 2.9290e-5 1764 0.02 2.8576e-6 

512 FSGS 817596 10.24 3.3005e-6 1000946 13.98 2.1293e-6 

FSSOR 2984 0.03 7.2994e-6 3376 0.04 3.5758e-7 

1024 FSGS 2853149 71.25 7.1831e-6 3482930 97.32 8.5184e-6 

FSSOR 5890 0.09 1.8275e-6 6615 0.13 4.4743e-8 

2048 FSGS 9767783 487.01 2.7356e-5 11884877 664.92 3.4082e-5 

FSSOR 11258 0.33 4.6509e-7 12859 0.42 1.0835e-8 

4096 FSGS 32773526 3266.51 1.0899e-4 39754285 48406.87 1.3610e-4 

FSSOR 21708 1.27 1.2600e-7 2427 1.56 2.9852e-8 

 

Table 2. Comparison of Number Iterations (K), The Execution Time (Seconds) and 

Maximum Errors for the iterative methods using example at 75.0,50.0 . 

 

M 

 

Method 

α = 0.50 α = 0.75 

K 

(Number 

Iterations) 

Time 

(Second) 

Max 

Error 

K 

(Number 

Iterations) 

Time 

(Second) 

Max 

Error 

256 FSGS 21017 37.73 9.97e-05 13601 5.92 9.86e-05 

FSSOR 7292 35.86 9.96e-05 4715 2.23 9.84e-05 

512 FSGS 77231 343.63 1.00e-04 50095 42.17 9.90e-05 

FSSOR 26884 261.56 9.98e-05 17417 16.68 9.87e-05 

1024 FSGS 281598 2747.34 1.02e-04 183181 339.85 1.01e-04 

FSSOR 98422 1916.28 1.00e-04 63298 123.01 9.96e-05 

2048 FSGS 1017140 68285.36 1.09e-04 663971 2454.53 1.08e-05 

FSSOR 357258 14064.44 1.04e-04 232784 1007.47 1.03e-05 

4096 FSGS 3631638 58914.30 1.38e-04 2380946 17795.25 1.38e-04 

FSSOR 21156 4104.17 1.36e-04 19153.0 3239.84 1.34e-05 

 

 

CONCLUSION 

 

For the time fractional diffusion problems, the paper presents the formulation of the Caputo’s 

finite difference equations to generate a linear system. Then to solve the linear system, the 

formulation of FSGS and FSSOR iterative methods have been constructed based on the 

Caputo’s derivative operator. From observation of all experimental results by imposing the 

FSGS and FSSOR iterative methods, it can be also observed in Table 1 and table 2 that the 

number of iterations and the execution time for FSSOR iterative method have been declined 

tremendously as compared with FSGS iterative method. This is due to the implementations of 

FSSOR iterative method have been accelerated by using the optimal value of the weighted 

parameter, ω. In fact, these conclusions are inline with the results of Othman and Abdullah 

(Ali, et al., 2013). Based on their accuracy, it can be concluded that the numerical solutions 

for both methods are in good agreement.  

 Since this study has focused mainly on the full-sweep scheme, further observation of 

half-sweep (Abdullah, 1991; Yousif, et al., 1995) and quarter-sweep (Othman, et al., 2000); 

schemes needs to be carried out in solving to solve fractional diffusion equations. In addition 

to that, the capability of 4 Point-MEGSOR should also be investigated for solving other 

multi-dimensional fractional partial differential equations (Evans, 1985; Evans et al., 1988) 
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and being used as a smoother in multigrid solvers (Hackbusch, 1995; Othman, et al., 2000). 

Also, discovery on various point block iterative methods can be also studied (Yousif, et al., 

1995; Martins, et al., 2002) to solve the fractional problems. 
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