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ABSTRACT.  In  this  work,  a  non-homogeneous  variable  coefficient  fourth-order  
parabolic  partial  differential  equation is  solved by using the Adomian decomposition  
method  (ADM).  The  ADM  yields  an  explicit  solution  in  the  form  of  series  which  
converges rapidly. The accuracy of ADM is also determined numerically. The modified  
ADM shows that the exact solution can be obtained by using four iterations only.

KEYWORDS.  Adomian decomposition method, parabolic equations

INTRODUCTION

One of the more recent methods of solving linear and non-linear equations of physics is 
the  so-called  Adomian  decomposition  method  (ADM)  (Adomian,  1988).  The  ADM 
which is requiring no transformation, linearization, perturbation or discretization, yields 
an analytical solution in the form of a rapidly convergent infinite power series with easily 
computable terms. There are three types of ADM such as standard ADM, modified ADM 
and two-steps ADM that have been proposed to solve numerous differential and integral 
equations like Burger-Fishers equation, Thomas-Fermi equations, Volterra and Fredholm 
integral equations and so on.

Besides ADM, there are also other numerical analytical methods that have been 
used to solve fourth-order boundary value problems such as finite difference, B-spline, 
homotopy perturbation method and variational iteration method (Noor & Mohyud-Din, 
2006).

The variable coefficient fourth-order parabolic partial differential equations in one 
space variable arise in the study of the transverse vibrations of a uniform flexible beam. 
Numerical computations of the transverse vibrations have been carried out by a number 
of  authors  (Khaliq  & Twizell,  1987).  For  instance,  Evans  (1965)  who expressed  the 
fourth-order parabolic equation in two space variables as a system of two second-order 
parabolic equations to be solved by finite difference methods while Khaliq and Twizell 
(1987)  solved  the  problem  of  variable  coefficient  fourth-order  parabolic  partial 
differential equations by using a family of second-order methods.

Suzelawati  et al. (2007) studied the numerical comparisons of AGE method and 
ADM in solving fourth-order parabolic equation. In that research, the non-homogeneous 
equation with constant coefficient was solved by using standard and modified ADM. As a 
continuation from the previous research, this paper will consider the non-homogeneous 
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variable coefficient fourth-order parabolic equation, which is solved by using standard 
and modified ADM.

Lets consider the fourth-order parabolic partial differential equation
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with the initial condition
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and the boundary conditions at 0=x  and 1=x  are of the forms
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METHOD

In the ADM, (Adomian, 1988), equation (1.1) is written in the form,
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where tL  and xL  are the differential operators
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The decomposition method consists of expressing the solution in a series form
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Now substituting (2.5) into (2.4) gives
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Thus, each term of the series (2.5) can be determined recursively as (Adomian, 1988)
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The exact solution in equations (2.7) and (2.8) is determined by
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In modified ADM, equation (2.7) is assumed to be divided into two parts namely 0h  and 

1h ,

100 hhu += (2.11)

The standard ADM with the recursive formula in (2.7) and (2.8) now become (Wazwaz, 
1999)
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RESULT

Now consider the fourth-order parabolic problem as considered in (Wazwaz, 2001),
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with the initial conditions
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and the boundary conditions
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The theoretical solution is 
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Applying the recursive formula (2.7) and (2.8) yields

( )( ) txtxx

xxxtxxxxu

cos
!7

6
cos1

!7

6
cos

!7

6

!7

6

734

7347347
0

+−+=






 −++





 −+−=

(3.6)

( )( ) ( ) 





+−+−−+−= t

t
xtxxu cos1

!2
124cos1

2
34

1 (3.7)

( ) 





+−+= t

t
xu cos1

!2
124

2

2 (3.8)

and so on.
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According to Adomian & Rach (1992), the phenomena of the noise terms occurs only 
when solving non-homogeneous partial differential equations. In that study, it was shown 
that  if  a term in the component  0u  is  cancelled  by a term in  1u  even though  1u  
introduces further terms, then the remaining non-cancelled terms in 0u  provide the exact 
solution.  However,  the  phenomena  is  not  always  true  for  every  non-homogeneous 
equations, and the non-homogeneity condition is not sufficient (Wazwaz, 1997).

It is obvious that the noise terms appear in components 0u  and 1u  that are given by
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and
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Thus, by eliminating (3.9) and (3.10) gives the remaining non-cancelled terms in 0u  that 
is exactly same as (3.5).

By using the modified ADM in equations (2.12)-(2.14) gives

( )( ) tx
!

txxu cos
7

6
cos1 734

0 +−+= (3.11)

The terms 0u  in equations (3.11) will be split into two parts as
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By applying equations (2.12)-(2.14) gives
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The exact solution in equation (3.5) can be obtained by using modified ADM in four 
iterations only.

The accuracy of ADM is determined numerically for the approximate solution  2φ  as 
given in Table 1.
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Table 1. Absolute errors for approximate solutions, 2φ  and theoretical solution, eu

Absolute Errors
t x eu 2φ

0.1 0.1 0.1184528768E-09 0.1099601185E-03
0.2 0.1516196824E-07 0.1199551620E-03
0.3 0.2590564417E-06 0.1299590564E-03
0.4 0.1940731934E-05 0.1399507319E-03
0.5 0.9254131002E-05 0.1499541310E-03

0.2 0.1 0.1166745925E-09 0.1757650117E-02
0.2 0.1493434785E-07 0.1917434934E-02
0.3 0.2551673340E-06 0.2077225167E-02
0.4 0.1911596526E-05 0.2237011597E-02
0.5 0.9115202546E-05 0.2396805203E-02

0.3 0.1 0.1137305344E-09 0.8883310114E-02
0.2 0.1455750841E-07 0.9690884558E-02
0.3 0.2487286788E-06 0.1049845873E-01
0.4 0.1863361076E-05 0.1130603336E-01
0.5 0.8885198001E-05 0.1211360520E-01

0.4 0.1 0.1096501183E-09 0.2801024011E-01
0.2 0.1403521515E-07 0.3055662404E-01
0.3 0.2398048088E-06 0.3310300980E-01
0.4 0.1796507539E-05 0.3564939651E-01
0.5 0.8566415495E-05 0.3819578642E-01

0.5 0.1 0.1044741145E-09 0.6817963010E-01
0.2 0.1337268666E-07 0.7437778337E-01
0.3 0.2284848885E-06 0.8057592848E-01
0.4 0.1711703893E-05 0.8677408170E-01
0.5 0.8162040196E-05 0.9297223204E-01

The numerical results for the approximate solution of problem (3.1) subject to conditions 
(3.2)-(3.4) by using the ADM and the exact solution are graphically the same as shown 
Figure 1.

Figure 1. Exact versus 3-term approximant ( )t,x3φ .

The [ ]qp  Padé approximant to a function ( )xf  is a polynomial of degree p  divided 
by a polynomial of degree  q  which is chosen so that the leading terms of the power 
series of the approximant match the first ( )1++qp  terms of the power series of ( )xf  
(Boyd, 1997).
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Using the Maple built-in Padé approximant [3,3] on 3φ  gives
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The combined  Adomian-Padé approach yields  generally  better  accuracy as  compared 
with the theoretical solution, see Table 2.

Table 2. Numerical comparisons for 50.x =

t eu ADM, [ ]333 ,φ Absolute Errors

0.125 0.9228028899E-05 0.9228028825E-05 0.74000000E-13
0.375 0.8654274757E-05 0.8654221824E-05 0.52933000E-10
0.50 0.8162040196E-05 0.8161746842E-05 0.29335400E-09
0.875 0.5961652327E-05 0.5953747013E-05 0.79053140E-08
1.00 0.5025133053E-05 0.5008012820E-05 0.17120233E-07

CONCLUSIONS

In  this  work,  the  ADM was applied  to  the  solutions  of  a  non-homogeneous  variable 
coefficient fourth-order parabolic partial differential equation. The phenomena of noise 
terms  is  useful  in  demonstrating  a  fast  convergence  of  the  exact  solution  (i.e.  by 
cancelling the same terms that occur in  0u  and  1u  will give the exact solution). The 
numerical  results  demonstrated  that  the  ADM  is  accurate,  reliable  and  requires  less 
computation. The modified ADM applied in the problem considered in this work gives 
the exact solution in four iterations only.
For future works, research can be done by considering the homogeneous or nonlinear 
variable coefficient fourth-order parabolic partial differential equation. Besides that, this 
study  needs  to  be  conducted  to  solve  fourth-order  parabolic  equation  with  constant 
coefficient by using ADM for Problem 1 as given by Khaliq and Twizell (1987).
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