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ABSTRACT.  Magnetic  resonance  (MR)  imaging  and bulk  T2 measurements  of  the  
tissue  water  protons  were  performed  to  investigate  whether  the  variability  of  
cooking potatoes in a microwave oven reflects differences either of the raw materials  
or of the heating process.  Sixteen whole potatoes, eight from the same plant and  
eight from different plants were individually heated in a microwave oven for four  
minutes. Segmentation of the pith, parenchyma and cortex tissues of the raw potato  
could be achieved from MR images of the spatial distribution of the T2  values. The 
experimental  data  from  bulk  NMR  T2 measurements  were  best  analysed  by  bi-
exponential fitting. The long T2 component (T21) decreased (from 254 to 73 ms for  
potatoes from the same plant and from 298 to 115 ms from different plants) upon  
cooking;  this  reflects  gelatinisation  of  the  starch  plus  water  loss  induced  by  
microwave heating. The T21 values of cooked potatoes (55 – 91 ms same plant, and  
73 – 141 ms different plants) covered a wider range than those of raw potatoes (250  
–  265  ms  same  plant  and  299  –  301  ms  different  plants)  indicating  that  the  
variability of cooking could not be accounted for solely by the differences measured  
for the raw product.  
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INTRODUCTION

A major challenge for the food industry is that the variability of both the raw materials 
and  the  processing  conditions  can  affect  the  quality  of  the  final  product.  As  a 
consequence, it is important to understand not only the fundamental properties of the raw 
materials used but also the processes that they undergo (Tijkens et al., 2003). Hence the 
food industry needs methods that  can be used either  ‘on-line’ or ‘at-line’  to evaluate 
batches  of  the  raw  materials  prior  to  processing,  so  that  the  subsequent  processing 
conditions can be adjusted to optimise the final product (Thybo et al., 2004).  

The  quality  of  cooked  potatoes  is  important  for  many  consumers  and  food 
producers alike. It is already well known that the structural and chemical composition of 
a  potato depends  on many factors  including species,  maturity,  growing-  and storage-
conditions (Burton, 1989); in particular, texture is one of the most important attributes in 
its acceptance by both consumers (Thybo et al., 2000) and food processors (Povlsen et 
al., 2003). Consequently, there has been extensive research to quantify and understand 
factors  that  affect  the  texture  of  cooked  potatoes;  these  include  sensory  perception 
(Collison et al., 1980; Van Marle et al., 1997), and instrumental approaches which relate 
to the rheological, biochemical and physical properties of potato (Martens and Thybo, 
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2000; Thybo et al., 2000; Kaaber et al., 2001; Alvarez and Canet, 2002; Bu-Contreras 
and Rao, 2002; Van Dijk et al., 2002).

‘Bulk’  and  ‘Imaging’  Nuclear  Magnetic  Resonance  (NMR)  techniques  have 
already  been  used  to  study  potato  structure  at  both  the  macroscopic  (tissue)  and 
microscopic (cellular) level. Thus, Toussaint et al., (1999), used MRI to develop a model 
that  was capable of predicting  the gelatinised fraction of starch in boiled potato as a 
function of time,  temperature and penetration of the gelatinisation front.  Thybo et  al. 
(2000) used low field proton (1H) NMR combined with near-infrared reflectance (NIR) 
and uniaxial compression and chemical analysis to predict the sensory texture quality of 
boiled potatoes. Subsequently, Thygesen et al., (2001) explored correlations between low 
field  1H NMR relaxation  times,  sensory  texture  and  chemical  constituents  of  boiled 
potato;  they concluded that  NMR measurements at  low field can be used to evaluate 
certain “mouth-feel” variables due to its sensitivity to the state of moisture in the sample. 
Martens  et  al.,  (2002),  used  T1 weighted  Magnetic  Resonance (MR) images  to  cross 
correlate sensory descriptive analysis with Magnetic Resonance Imaging (MRI) data. 

Recently MRI techniques were used in this laboratory to investigate the effects of 
microwave heating of potato (Nott et al., 2003); prior to shrinkage, MRI phase mapping 
gave spatial measurements of temperature that are independent of the moisture content 
and structural changes. In addition, the spatial distribution of the water proton spin-spin 
relaxation times (T2 values) showed three distinctive tissues, the pith, the parenchyma 
tissue and the cortex,  the T2 values  of which decreased and converged as  the potato 
homogenised during cooking.  It  is  also suggested that  moisture  loss is  another  factor 
besides  starch  gelatinisation  that  caused  the  significant  reduction  of  T2 values  upon 
microwave heating.

Thybo et al., (2003) investigated relationships between the dry matter content of 
potatoes  and the parameters  determined from both bulk NMR and MR images.  Both 
components of the spin–spin relaxation times determined by bulk NMR were found to be 
highly correlated with dry matter;  as a consequence,  MR images showed large visual 
differences due to variations in the water distribution. A subsequent study by Thybo et 
al.,  (2004),  investigated  the ability  of MRI to evaluate  the  sensory texture quality  of 
cooked potatoes; although there was no correlation between MRI data from raw potato 
and the specific  gravity,  it  was suggested that MR data identifies  anatomic structures 
within  the  raw potato  which  are  important  for  the  perceived  textural  properties  after 
cooking.

To complement the substantial body of work already reported for raw potato, this 
present study was designed to use a combination of MR imaging and bulk NMR for two 
purposes: first, to study the variability within species for both raw and cooked potato; 
second, to quantitate structural changes that occur during microwave heating.

MATERIALS AND METHODS
Heating experiments
Sixteen potatoes (Desiree variety) from a local farm were used; eight from the same plant 
whereas the other eight were randomly picked from different plants; all were cleaned and 
weighed  before  and  after  heating.  A 900W domestic  microwave  oven (Sharp  model 
R383SL)  with  a  turntable  was  used  at  100% power.  Each  potato  was  attached  to  a 
perspex sheet which had a triangular end to allow accurate repositioning in the MR probe 
before,  during and after  heating.  For every experiment,  the oven was pre-warmed by 
heating 2 litres of water for 5 minutes; then each potato was placed individually in the 
centre of the turntable and heated for 4 minutes. 

2



MRI hardware
All  MRI  measurements  were  acquired  using  a  2.35  Tesla,  31cm  horizontal-bore 
superconducting  magnet  (Oxford  Instruments,  Oxford,  UK)  connected  to  a  Bruker 
Medzintechnik Biospec II imaging console (Karlsruhe, Germany).  A gradient set (14.5 
cm internal diameter) was built 'in house' with each axis powered by a pair of Techron 
gradient amplifiers (Model 7790, Crown International Inc., Elkart, U.S.A). A cylindrical, 
eight strut bird cage radiofrequency (RF) probe (internal diameter of 9.4 cm), built 'in 
house', was used in the quadrature mode to transmit and receive the MR signal.

MRI quantitation  and data processing
The protocols for MRI quantification of the spin-spin relaxation times (T2-values) gave 
313 µm (matrix 256 × 256) in-plane spatial resolution for a 3 mm slice thickness. A set of 
16, T2-weighted echo images was acquired using a multi-echo, spin echo sequence with 
TE 12 ms and TR 7.5 s, scan time 33 minutes. The data for the equivalent pixels in each 
series of images were fitted to the corresponding mono-exponential decay curve for T2 

given by Equation 1
 Mxy = M0 exp (-TE/T2)                                 (1)

where Mxy is the magnetisation in a particular pixel, M0 is the equilibrium magnetisation, 
TE is the echo time and T2 is the spin–spin relaxation time. 
The sets  of raw data  were transferred to  a  network of  Linux workstations  where the 
subsequent  data  processing  used  a  curve  fitting  program  written-in-house  by  Dr  P. 
Watson,  based  on  the  method  of  Levenberg–Marquandt  (1963)  least-squares 
optimisation.  The  images  were  visualised  using  image  display  software  (Cmrview) 
written by Dr N.J.Herrod. Segmentation was carried out by manually drawing a region of 
interest (ROI) on the three tissues of raw potato.

Bulk NMR T2 measurement
All the measurements of the raw and cooked potatoes were made at room temperature 
(20°C).  Bulk  NMR T2 measurements  were acquired  from the  potatoes  using  a  Carr-
Purcell-Meiboom-Gill (CPMG) sequence with 256 points, TE 1.6ms and TR 10 seconds. 
The T2 data were fitted to the bi-exponential decay curves using Equation 2, with the aid 
of Marquardt least-squares optimisation method (Gnuplot software, Linux version 3.7)
                    Mxy = M01exp(-TE/T21)  + M02exp(-TE/T22)                                   (2)
where T21 and T22 are the two T2 components. 

RESULTS AND DISCUSSION
MRI quantitation
Figure 1 demonstrates that the T2 contrast between the pith, parenchyma and cortex of the 
raw potato in a T2 map is sufficient to distinguish between those three tissues; as a result, 
they can be segmented and analysed separately. The fact that the water in the pith has 
longer T2 values than that in the parenchyma and cortex tissues may reflect the fact it is 
present in larger amounts than in those other two tissues (Karlsson & Eliasson, 2003).

The mean and standard error (n=8) for T2 of the pith of the raw potatoes was 80 ± 
4 ms for the same plant (Figure 2(a)), and 100 ± 5 ms for the different plants (Figure 2 
(b)). The values for parenchyma and cortex of the same plant were 61 ± 4 ms and 58 ± 6 
ms, respectively; the corresponding T2 values for both tissues from different plants were 
slightly  higher,  80 ±  1 ms  and 74 ± 4  ms,  respectively.  Martens  and Thybo  (2000) 
suggested  that  the  three  types  of  tissues  are  distinct  in  raw  potato  because  of  the 
differences in their starch and water contents. 
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Figure 1.  (A) Experimental MRI image of an intact raw potato, together with the 
location following manual segmentation: (B) the pith, (C) the parenchyma and (D) the 

cortex. (E) Shows a 2D slice from the MR image of a cooked potato at ambient 
temperature.
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Figure. 2. T2 values for the water protons in the three different tissues of raw potatoes 
measured by MRI: (A) from the same plant, and (B) from 

different plants.
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However, in cooked potatoes (Figures 3 (A) and (B)), the difference in the T2 

values between the three tissues was not large enough for them to be distinguished by 
segmentation, which implies that the texture of the cooked potatoes had become more 
homogenous  due  to  cellular  disruption.  Nott  et  al.  (2003)  previously  reported  that 
microwave heating caused cellular disruption, which resulted in an even distribution of 
water, effectively homogenising the texture as observed in the T2 maps. Although heating 
also  results  in  moisture  loss,  the  content  cannot  be  absolutely  quantitated  by  MRI 
measurements of the liquid proton density (M0) since those protocols cannot detect the 
water which is strongly bound to the starch granules before cooking. Interestingly,  re-
analysis of data from that earlier study showed a highly negative correlation (r = -0.956, 
p<0.01)  between  the  T2 values  of  the  cooked  potatoes  from  MR  imaging  and 
measurements of water loss (Figure 4). This suggets that after the structural changes have 
taken place the T2 values from MR imaging may represent the moisture distribution even 
though the M0 values extrapolated from T2 decay do not. As a consequence, the role of 
M0 values was not further considered in the present study. The standard deviation of T2 

indicates the spatial heterogeneity of cooking across the potato. The data measured after 1 
minute of heating, clearly demonstrates that the potato was only partly cooked, as did the 
data  after  2  minutes.  Thereafter,  the  standard  deviation  decreased  progressively  with 
increasing cooking time as the potato structure became more homogenous until it was 
fully cooked (after 4 and 5 minutes of heating). 

Bulk NMR measurement 
Figure 5 shows the results from bi-exponential fitting of the T2 decay of water protons for 
raw and cooked potatoes from the same, and from different plants which is in agreement 
with previous studies (Thybo et al., 2003; Thygesen et al., 2001 and Thybo et al., 2000). 
It has been suggested that the long T2 component (T21) is associated with intracellular 
water  whereas  the  short  T2 component  (T22)  is  ascribed  to  extracellular  water  in  the 
vascular tissue and pith (Thybo et al., 2000). In the present study, the mean values for T21 

and T22 of the water in the raw potatoes from the same plant were 254 ± 8 ms and 41 ± 2 
ms respectively, whereas the values for the different plants were 298 ± 10 ms and 38 ± 2 
ms  respectively.  That  the  standard  deviation  for  the  values  from  different  plants  is 
slightly  higher  than  for  those  from same  plant  suggests  that  there  may  be  a  higher 
‘biological’ variation between different plants than within the same plant.

Figure 5 also shows there is  a decrease in  the T2 values  from raw to cooked 
potatoes; thus the mean values of T21 and T22 for the cooked potatoes from the same plant 
were 73 ± 14 ms and 29 ± 6 ms respectively whereas the values for different plants were 
115  ± 22 ms and 39  ± 8 ms, respectively. This decrease in the T2  values is due to the 
starch  gelatinisation  process  during  which  starch  granules  progressively  absorb  water 
from outside, swell, and then on disruption release amylose, with which the water can 
associate  (Olkku  and  Rha,  1978).  Thybo  et  al.,  (2000)  suggested  that  the  difference 
between  the  long  T2 components  of  the  raw  and  cooked  potatoes  is  due  to  the 
gelatinisation process, which provides a more accessible molecular environment for the 
water and hence restrict its motion in the intra-cellular matrix. The difference between the 
short T2  components of the raw and cooked tissues was attributed to extra cellular water 
situated in the vascular tissue and pith which is diffusion-hindered.
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Figure. 3. Mean T2 values for cooked potatoes measured by MRI: (A) from the same 
plant, and (B) from different plants
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Figure 4. Histogram plots for the T2 values of the water proton determined by MRI 
for different potatoes heated for 1, 2, 3, 4 and 5 minutes. The correlation with 
percentage water loss is shown in the graph on the lower right of the figure.
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Figure 5. Two components of the T2 relaxation times measured by bulk NMR: (A) T21, 
and (B) T22 values for raw and cooked potatoes from the same plant; (C) T21, and (D) 

T22 values of raw and cooked potatoes from the different plants.
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Although the difference between T2 values of the three tissues was large enough 
for them to be separately observed in the MR images, it was too small to enable then to  
be distinguished in the bulk T2 measurement; typically such analyses requires an order of 
magnitude  difference  between  the  individual  components.  Consequently  the  bulk  T2 

measurement reflects the cellular distribution of water, and the fit of the NMR data to a 
mono-exponential  decay is the weighted average of two of the bulk components.  The 
echo train used for MRI is too short (12 ms x 16 = 192 ms) to be significantly influenced  
by  the  longer  T2 component  observed  in  the  bulk  data,  which  is  also  the  major 
component. Although there is good overall agreement between these results with those 
from other studies (Thybo et al., 2000) there are numerical differences in the actual T2 

values; these reflect the different field strengths used (100MHz in this study compared to 
23.2MHz), and also the different heating methods (microwave heating in this study as 
opposed to boiling). 

CONCLUSIONS

This study provides a clear demonstration of the fact that MRI can be used to measure 
intact  samples  of  food  materials  which  undergo  physical  changes  due  to  cooking; 
specifically, that T2 measurements by either MR imaging or bulk NMR can be used to 
evaluate the variability of cooking potatoes by microwave heating. The T2 measurements 
can  be  used  to  rationalise  changes  in  texture  between  raw  and  cooked  potato; 
microscopically,  T2 values indicate the different molecular associations between water 
and starch in the tissues of the raw versus cooked potatoes. 

The  present  study demonstrates  two potential  benefits  of  MRI measurements: 
first,  the  use  of  whole  potato  as  opposed  to  excised  sections  to  obtain  non-invasive 
measurements for the quality of intact potatoes; second, it demonstrates that the three 
types of tissues in raw potato can be analysed quantitatively,  rather than qualitatively.  
More  broadly,  this  study also  suggests  that  MRI measurements  may be  able  to  help 
agriculturalists and food scientist to determine the fundamental variability of “raw food” 
materials and thereby understand the changes which occur when they are cooked.
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