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ABSTRACT. In this paper, there are three ordering strategies considered such as 

lexicography (NA), red-black (RB) and four colour (4C) to be applied onto the family  

Successive Over-Relaxation (SOR) iterative methods, which are denoted as FSSOR, HSSOR 

and QSSOR respectively. Based on these strategies, it has shown that the RB strategy is the 

optimal among all strategies for the quarter-sweep iterative method to solve two-dimensional 

convection-diffusion equations by using the five points finite difference approximation 

equation. To confirm our assertion, we include numerical results obtained in order to show 

the efficiency of the QSSOR method with the RB strategy compared to the FSSOR and 

HSSOR methods. 

KEYWORDS. Convection-Diffusion Problems, Quarter-Sweep Iterative Approach, Red-

Black Ordering Strategy. 

INTRODUCTION 

 

In the era of computer technology, the numerical techniques such as the finite difference, 

finite element, finite volume and boundary element methods play an important role in 

simulating a wide variety of science and engineering problems. Those methods have been 

employed by many researchers to gain approximate solutions. Apart of those methods, the 

findings on various iterative methods such as the full-, half- and quarter-sweep iterations 

(Evans & Yousif, 1990; Abdullah, 1991; Jumat & Abdul Rahman, 1998; Othman & 

Abdullah, 2000) are definitely important in solving any system of linear equations.  

In this paper, however, we investigate the optimal ordering strategy to be applied onto 

the full-, half- and quarter-sweep iterative methods by using the Crank-Nicolson (CN) finite 

difference scheme in solving the heat transfer problem, mainly on a two-dimensional 

unsteady convection-diffusion problem. This is because of the combination of iterative 

schemes and ordering strategies, which have been proven, can accelerate the convergence 

rate, see Parter (1988), Evans and Yousif (1990) and Zhang (1996). To begin the derivation, 

let us consider the two-dimensional unsteady convection-diffusion problem as given by 

(Harbans & Abdul Rahman, 1996) 

           ( ) ( ) [ ] [ ] [ ]TtyxtyxF
y

U

x

U
w

y

U

x

U
v

t

U
,01,01,0,,,,,

2

2

2

2

××∈=��
�

�
��
�

�

∂

∂
+

∂

∂
+

�
�

�

�

�
�

�

�

∂

∂
+

∂

∂
−

∂

∂
  (1) 

subject to the initial condition  
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and the Dirichlet boundary  conditions  
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where v and w  are diffusion and convection parameters,  respectively. Then ( )tyxU ,,  is a 

function depend on the independent variables, x,  y  and t. 

 Before explaining on formulation of the finite difference approximation equation, in 

this paper we just consider in case of uniformly subinterval distances for each node point in 

the x and y directions, so that we can easily derive the full-, half- and quarter-sweep 

approximation equations for the problem defined in (1). Suppose that solution domain 

defined in (1) can be partitioned into (m+1) subinterval in the x and y directions and (n+1) in 

the t direction. The subintervals in the x, y, and t directions are denoted as x∆ , y∆  and 

t∆ respectively which are defined as 
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FINITE GRID NETWORKS AND FINITE DIFFERENCE APPROXIMATION  

In formulating various iterative schemes such as the full-, half- or quarter-sweep, we need to 

build the finite grid networks as a guide for development and implementation of the full-, 

half- and quarter-sweep algorithms mainly in applying several ordering strategies. Therefore, 

Figure 1 acts as a guide for development of the iterative schemes. 

 
  (a).    (b).    (c). 

 

 Figure 1.  Finite grid networks for the (a) full-sweep, (b) half-sweep and (c) quarter-

sweep in case of m= 7 at any level 0>t . 

 Further more in this section, the Crank-Nicolson (CN) method is used to obtain the full-, 

half- and quarter-sweep approximation equations for the problem defined in (1). Suppose that 

the values of ( )tyxU ,,  at the point ( )kji tyx ,,  can be approximated and indicated by kjiU ,, . 

By using the central difference, the full- and quarter-sweep approximation equations can be 

generally stated as 

ββββββ
kjikjikjpikpjikpjikjpi fUUUUU

,,1,,11,,31,,31,,21,,2 =+−−−− ++++++−+−            (3) 
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where, 
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The value of p which corresponds to 1 and 2 represent case of the full- and quarter-sweep 

iteratives,  respectively. Apart from equation (3), the rotated finite difference approximation 

equation (Dahlquist & Bjork, 1974) can be formed by the following transformation: 
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Using the above transformation, the distance in the i and j which correspond to ∆x=h and 

∆y=h respectively become h2 . Therefore, the scheme of the CN method using the rotated 

finite difference approximation can be expressed as  
αααααα k,j,ik,j,ik,j,ik,j,ik,j,ik,j,i fUUUUU =+−−−− +++++−+++−+−− 111113111311121112      (4) 
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In fact the computational molecules for equations (3) and (4) based on the CN method can be 

shown in Figure 2.  

 

 

              
   (a).     (b). 

 

 Figure 2. Computational molecules of the CN method in case of (a) the full- and 

quarter-sweep and (b) the half-sweep for m = 7 at any level time 0>t . 
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IMPLEMENTATION OF ITERATIVE ORDERING STRATEGIES 

 

In this section, there are three ordering strategies considered such as NA, RB and 4C to be 

applied onto the full-, half- and quarter-sweep SOR iterative methods, which are denoted as 

FSSOR, HSSOR and QSSOR respectively see Figure 3. The location of numbers 1, 2, 3, … , 

49 for m = 7 shows on how the implementation of these methods will be computed by 

starting at number 1 and ending at number 49. 

According to previous studies on the implementation of  various orderings, it is 

obvious that combination of iterative schemes and ordering strategies which have been 

proven can accelerate the convergence rate, see Parter (1988), Evans and Yousif (1990) and 

Zhang (1996). Therefore, in this paper, we study on each scheme applied by each of the three 

ordering strategies. 

 

   
  (a).    (b).        (c). 

 

 Figure 3.  (a), (b) and (c) show the ordering strategies for NA, RB and 4C, 

respectively in case of m= 7 at any level 0>t . 

 

NUMERICAL EXPERIMENTS 

 

In term of the computational implementation on the FSSOR, HSSOR and QSSOR methods, 

we only consider node points of type     as shown in Figure 1 until specified iterative 

convergence is satisfied. Thus,  the  direct method (Abdullah, 1991; Jumat et al., 1998; 

Othman & Abdullah, 2000, 2001) will  be performed to obtain approximate solutions for the 

remaining points by using equations (3) and (4). 

 To review of the efficiency of all ordering strategies applied into the FSSOR, HSSOR 

and QSSOR methods, we conducted numerical experiments, which have done onto the two-

dimensional unsteady convection-diffusion equation defined as (Harbans & Abdul Rahman, 

1996) 
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where v and w are coefficients. Then Dirichlet boundary conditions, initial condition, and the 

exact solution of problem (5) are given by 
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Figure  4.  Number of iterations versus mesh size of the FSSOR, HSSOR and QSSOR 

methods using the NA strategy. 

 

 

 
Figure  5.  Number of iterations versus mesh size of the FSSOR, HSSOR and QSSOR 

methods using the RB strategy. 

 

 

 
Figure  6.  Number of iterations versus mesh size of the FSSOR, HSSOR and QSSOR 

methods using the 4C strategy. 
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Figure  7.  The execution time (seconds) versus mesh size of the FSSOR, HSSOR and 

QSSOR methods using the NA strategy. 

 

 
Figure  8.  The execution time (seconds) versus mesh size of the FSSOR, HSSOR and 

QSSOR methods using the RB strategy. 

 

 
Figure  9.  The execution time (seconds) versus mesh size of the FSSOR, HSSOR and 

QSSOR methods using the 4C strategy. 

 

 All results of numerical experiments, obtained from implementation of the FSSOR, 

HSSOR and QSSOR methods, have been recorded in Table 1. In the implementation 

mentioned above, the convergence test considered the tolerance error 1010−=ε . Figures 4, 5 

and 6 and Figures 7, 8 and 9 show number of iterations and the execution time versus grid 

size respectively. 
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CONCLUSION 

 

According to the numerical results obtained and recorded in Table 1, the finding in Figures 4, 

5, and 6 and Figures 7, 8, and 9 especially based on  the RB strategy shows that a number of 

iterations and the execution time for the QSSOR have declined by 14.29 – 30.00% and 0.00 -  

54.55% respectively compared with the HSSOR method. Overall, the numerical results 

shows that the QSSOR method is superior among all iterative methods in terms of a number 

of iterations and the execution time. This is because the computational complexity of the 

QSSOR method is quarter of the FSSOR method, while the HSSOR method is half. Even 

though number of iterations for each mesh size of the RB and 4C strategies with the QSSOR 

are the same, the RB strategy is the optimal ordering among all strategies. This is because of 

the execution time at m = 256 has declined by 10.61%  compared to the 4C strategy. 

 

Table 1.  Comparison of number of iterations, the execution time (seconds) and maximum 

absolute errors for the implementation of the respective NA, RB and 4C ordering 

strategies onto the FSSOR, HSSOR and QSSOR methods. 
 

No.  of  iterations 

Ordering FSSOR HSSOR QSSOR 

16 32 64 128 256 16 32 64 128 256 16 32 64 128 256 

NA 14 24 45 87 171 11 19 34 66 129 9 14 24 45 87 

RB 9 14 27 51 97 7 11 20 36 68 6 9 14 27 51 

4C 9 14 27 51 97 7 11 20 36 68 6 9 14 27 51 

Execution time (seconds) 

Ordering FSSOR HSSOR QSSOR 

16 32 64 128 256 16 32 64 128 256 16 32 64 128 256 

NA 0.11 0.49 3.57 57.50 582.00 0.05 0.16 1.26 38.39 392.11 0.05 0.16 0.60 17.08 203.72 

RB 0.06 0.28 1.65 31.80 393.32 0.05 0.11 0.66 16.64 217.23 0.05 0.05 0.43 13.35 146.16 

4C 0.06 0.27 2.25 36.96 495.53 0.05 0.11 0.66 18.29 240.47 0.05 0.06 0.55 13.35 163.51 

Maximum absolute errors 

Ordering FSSOR HSSOR QSSOR 

16 32 64 128 256 16 32 64 128 256 16 32 64 128 256 

NA 2.14 

e-4 

5.32 

e-5 

1.28 

e-5 

2.68 

e-6 

1.44 

e-7 

7.53 

e-4 

5.25 

e-4 

4.73 

e-4 

4.61 

e-4 

4.58 

e-4 

8.55 

e-4 

2.14 

e-4 

5.32 

e-5 

1.28 

e-5 

2.68 

e-6 

RB 2.14 

e-4 

5.32 

e-5 

1.28 

e-5 

2.69 

e-6 

1.56 

e-7 

7.53 

e-4 

5.25 

e-4 

4.73 

e-4 

4.61 

e-4 

4.58 

e-4 

8.55 

e-4 

2.14 

e-4 

5.32 

e-5 

1.28 

e-5 

2.69 

e-6 

4C 2.14 

e-4 

5.32 

e-5 

1.28 

e-5 

2.69 

e-6 

1.56 

e-7 

7.53 

e-4 

5.25 

e-4 

4.73 

e-4 

4.61 

e-4 

4.58 

e-4 

8.55 

e-4 

2.14 

e-4 

5.32 

e-5 

1.28 

e-5 

2.69 

e-6 
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