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ABSTRACT. The  Finite-Difference  Time-Domain  (FDTD)  method  is  very  popular  in  
analyzing  an antenna  due  to  its  simplicity  and robustness  of   implementation.  In  this  
paper, we adapt a new concepted to the FDTD method. To show the efficiency of the new  
method,  we  compared  the  new method  to  the  original  FDTD method  to  solve  a  one-
dimensional problem. From the result, it shows that the new method solves the problem  
faster  (67%) and give approximately  the  same result  compared to  the standard FDTD  
method.

KEYWORDS.  Finite-Difference Time-Domain (FDTD),  high speed low order FDTD,  
antenna analysis.

INTRODUCTION

Radio  waves  contribute  to  high  quality  of  modern  life  and  comfort.  Electric  fields 
propagate in the form of radio wave generated from an antenna of a communication device 
is the main event in wireless communication. Advances in communication industry, need 
the devices to be  design carefully. Smaller built-in antenna with broader bandwidth has to 
be designed to fulfill these needs, e.g. the Planar Inverted F antenna (PIFA). To assist a 
low-cost design of an antenna, there is a need for “soft” tools that can simulate the behavior 
of the electric fields or radiation generated from the antenna. The behavior of the fields can 
be predicted by using partial differential equations. 

The finite-difference time-domain (FDTD) method was introduced by Yee (1966) 
for  solving  Maxwell  equations  in  time-domain.  The  method  further  was  developed  by 
Taflove (2000). The method represents a simple and efficient approach of solving Maxwell 
equations in differential time-domain form. The formula proposed by Yee needs the electric 
and magnetic fields to be solved alternately from starting point to the required time step.

The method is  explicit  in nature and depends on Courant-Frederich-Levy (CFL) 
condition  to be stable.  Even though the standard FDTD method is  a  very credible  and 
precise  method,  there are  still  drawbacks in  the method.  FDTD needs large  amount  of 
memory and long processing time (Araujo, et al., 2003).

An ordinary approach to improve the speed of the algorithm would be using more 
powerful computers, computers with several processors working concurrently,  cluster of 
workstations or by pile's of personal computers, which known as Beowulf cluster (Rodohan 



& Saunders, 1994; Jensen, et al., 1994; Nguyen et al., 1994; Fijany, et al., 1995; Schiavone, 
et  al.,  2000;  Guiffaut  & Mahdjoubi,  2001;  Zhenghui,  et  al.,  2002;  Yang,  et  al.,  2003; 
Araujo,  et al., 2003; Yu,  et al., 2004). Another popular approach is by solving the same 
problem with coarser grid but using higher-order method (Georgakapoulus,  et al., 2002; 
Lan, et al., 1999; Taflove, 2000).

In  this  paper,  we  proposed  a  new  concept  to  be  applied  in  designing  FDTD 
algorithm.  This  new method,  which  is  called  high-speed  low-order(m)  finite-difference 
time-domain (HSLO(m)-FDTD), is implemented in a slightly different algorithm from the 
standard FDTD. 

THE NEW METHOD

The development of this method is inspired by Modified Explicit Group (MEG) introduced 
recently by Othman and Abdullah (2000) to solve Poisson problem. The MEG method is 
actually an extension of the concept of the half-sweep iterative method, which is proposed 
by Abdullah  (1991)  through  the  Explicit  Decoupled  Group  (EDG)  iterative  method  in 
solving the same Poisson problem.

In this paper we apply the concept used in MEG to the FDTD but without iterative 
process to solve Maxwell equations. The iterative process has to be ignored because of the 
explicit nature of the discrete formulations.

In 1864, James Clerk Maxwell introduced a couple of equations, called Maxwell 
equations that are still being applied till today. This equations has been used by researchers 
from all  over  the  world  to  design  aircraft,  antenna,  circuit-board,  cellular  phones,  bio-
electromagnetic system, digital circuit, scattering problem and wave propagation (Kunz & 
Luebber,  1993;  Taflove,  1995;  Taflove  &  Brodwin,  1975;Yee,  1966).  The  Maxwell 
equations in free space is given by
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where  ε0,  µ0, E and  H are the electric permittivity, magnetic permeability, electric 
and  magnetic  fields,  respectively.   For  the  one-dimensional  case  using  electric  in  x-
direction, Ex and magnetic in y-direction, Hy, Eqs. (1) and (2) become
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These are the equations of a plane wave with the electric field oriented in the  x-
direction, magnetic field in the y- direction, and traveling in the z-direction. The right hand 

side of Eqs. (3) and (4) above is then approximated by Taylor series at zm ∆
2

as below
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where m is any odd number ranging from 1 to 7 and for the left hand side of Eqs. (3) 

and (4) will be approximated by Taylor series at  t∆
2
1

 as below
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By using Eqs. (5), (6), (7) and (8) to approximate (3) and (4), yields
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The  alternating  calculation  of  Eqs.  (9)  and  (10)   are  the  main  ingredient  in 
HSLO(m)-FDTD method. In this paper we will only discuss when m=3 (since we used 3h 
spatial discretization) and will be acronym with HSLO(3)-FDTD. Formulation for FDTD 
can be gathered when m=1. For detail on FDTD formulation, please refer to Yee (1966). 
Eqs. (9) and (10) will be executed only at the black nodes in the computational displayed in 
Figure 1.

Fiqure 1. Computational domain for HSLO(3)-FDTD.

The remaining white nodes will be executed outside the main loop by using linear 
weighted interpolation. 

NUMERICAL EXPERIMENTS AND RESULTS
In order to evaluate the performance of HSLO(3)-FDTD, we numerically solve the one-
dimensional  Maxwell's  equation  with  400MHz  of  frequency  with  Gaussian  Pulse 
transmitted  1  meter  from  a  monopole  antenna  in  two  opposite  direction.  We  used  a 
perfectly electric conducting at both boundaries. We discretize the computational domain 
into 200 grid points, i.e. 2.67λ and the pulse is generated at the middle of the computational 
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domain. The experiment was run on SMP machine (Sun Fire V1280) but using only one of 
its processors.

To show the  gain  of  speed obtained by HSLO(3)-FDTD method,  electric  fields 
simulated by HSLO(3)-FDTD method and an existing standard FDTD method and their 
execution time are made and compared. The results of electric fields simulation are as in 
Figures 2 and 3, which show the behavior of wave propagation from the point source to 
both directions. The calculation time for HSLO(3)-FDTD and standard FDTD are shown in 
Figure 4. The result shows that HSLO(3)-FDTD has reduced the calculation time of FDTD 
by 50%-60%. The reduction will further reduce (until 67%) at higher time steps (time step 
approaching  ∞).   The  maximum  reduction  of  calculation  time  can  be  estimated  by 
maximum relative gain in complexity of arithmetic as in Table 1.

Table 1.   Comparison of complexity of FDTD and HSLO(3)-FDTD 
              (Np number of grid points, Nt number of time steps)

Method ADD/SUB MUL/DIV

FDTD 4NpNt 2NpNt

HSLO(3)-
FDTD

(4/3)NpNt + 
(2/3)Np

(2/3)NpNt 

+(2/3)Np

From Table 1, we can calculate relative gain by HSLO(3)-FDTD to standard FDTD. 
Formulation  of  the  relative  gain  for  both  addition/subtraction  (ADD/SUB)  and 
multiplication/division (MUL/DIV) as below.
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Taking the limit Nt ∞, we obtain the percentage gain of 67% and
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Again by taking the limit Nt ∞, we also obtain the percentage gain of 67%. As the 
complexity  is  the  major  contributor  to  algorithm  processing  time,  we  predict  that  the 
maximum relative reduction in calculation time for HSLO(3)-FDTD to standard FDTD is 
67%.

The accuracy of the HSLO(3)-FDTD are check by global and the amplitude error 
and are summarize in Table 2.  The percentage of wave phase velocity error for FDTD and 
HSLO(3)-FDTD are 0.4% and 3.6% respectively.  This result is still acceptable and at par 
with other research output (Lan et al., 1999).
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Figure 2. Electric fields in volt/meter at 1.1 ns generated by a point source in the 
middle of computational domain.
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Figure 3. Electric fields in volt/meter at 2.2 ns generated by a point source in the 
middle of computational domain.
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Figure 4. Comparison of calculation time between HSLO(3)-FDTD and standard 
FDTD.

Table 2.   Global and amplitude errors of  HSLO(3)-FDTD compared 
to FDTD.

Error Time Step
50 100 150

Global 
Error

2.35e-7 1.40e-6 3.77e-6

Amplitude 
Error

2.076e
-2

2.321e-
2

3.130e
-2

CONCLUSION
This  paper  presents  a  new  solver  in  time-domain  solution  of  Maxwell  equations.  The 
performance of this scheme was tested for a problem in one dimension for antenna analysis. 
The major advantages of this method are that it has less complexity and solve faster than 
the existing FDTD scheme.  The results above confirm the advantages that can be derived 
from the HSLO(3)-FDTD method.  It  is  clearly shown that  the new method offers as a 
merit-able alternative direct scheme to solve real time problems. Our future research will 
concern on analyzing the behavior of HSLO(m)-FDTD method when m=5 and 7. We will 
also extend this method to solve two dimensional problem.
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