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ABSTRACT. In this note we investigate the motion of a particle bouncing inside a billiard.
The dynamics of the billiard system is illustrated by the phase space in terms of s (the position)
and p (the tangential momentum). A certain computer algebra svstem is used to generate these
phase spaces. Different types of billiard are shown to generate different orbits. Four tvpes of
billiard have been investigated which are the circular, stadia, elliptical and oval billiards.
Circular and elliptical billiards are shown to generate the regular motions. In the stadia-
billiard, the motion of particle displayed chaotic behaviour. For an oval-billiard, it is observed
that both regular and irregular motions of the particle existed.
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INTRODUCTION

Dynamics is the study of the motions of objects and the forces that cause them. The
developments in dynamics aimed at understanding the behaviour of systems over long times.
The basic rules for predicting the behaviour of systems are developed by Newton in the
seventeenth century. Sometimes the behaviour of systems is predictable, but some systems are
found to exhibit chaos and this eventually resulted in  breakdown of predictability.

The dynamics in billiard system has been investigated, in order to illustrate the features
of regularity and chaos in dynamical systems. This billiard problem discussed the motion of a
particle bouncing inside the billiard, and this beautiful idea was introduced originally by Berry
(1981). Further researches are widespread. For example, Koiller et al (1996) have suggested
billiards with moving boundaries as the limiting case of rigid bodies. Kirillov (1996) found
unexpected application of the billiard system in cosmological problems. Beletsky and Pankova
(1996) used the billiard problem to describe the interaction of two mass points connected by an
non-extensible weightless thread whereby the center of mass of which moves along the circular
Kepler orbit. A review on the current state of this research field is given by Bunimovich
(2000).

In this note, we will consider the billiard as a region of the plane bounded by a closed
curve C. The particle is moving freely in this region and making elastic collisions with the
enclosure. Assuming the motion of particle is in a straight line, we have simple reflection at
each bounce and no dissipation. The particle bounces in accordance with the conservation law,
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Le. its angle of reflection equals the angle of incidence. Bouncing map of the particle is specified
by the evolution of position and tangential momentum from the collision inside the billiard.
This construct of the billiard system turns out to be instructive, with dynamics depending
particularly on the shape of the boundary.

This note is organized as follows. We will introduce the model of the billiard mapping
and notion of stable closed orbits. The four types of billiard (circular, stadia, elliptical and oval)
are then discussed and their phase space trajectories depicted using certain computer algebra
(for example, Mapled and Mathematicad).

MODEL OF BILLIARD MAPPING

The orbit of a particle bouncing inside the billiard may be specified by the sequence of its
positions and tangential momentums after each impact. The position around the curve C is

parametrised by either the arc length 5 or by the direction Y. where ¥ is the angle measured
from the origin (anticlockwise-pointing), as shown in Figure 1.

Figure 1. Billiard geometry

Closed curve C can be defined by giving its radius of curvature R as a function of W, therefore
the two parameters s and Y can be related,

Lﬂ’f.‘ - I Ry ydw, (W,= /2 and y is a dummy)
- Ir

sy J=f‘e:hp'th'}. (1)
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The direction of the orbit after impact will be labeled by its angle ¢ with respect to the
forward tangent, or by the tangential momentum p, defined by

P = CO0Sd, . (2)
Since the angles ¥ and ¢ can be measured directly from the graph (see Figurel). so the ¥,
¢¢ description 1s more convenient for calculating the orbits. For theoretical purposes the s, p
description is preferable.
This discrete dynamics is a mapping M of the phase space with coordinates s, p and is symbolized

by
('*nrl ) [ j..l.- ]
‘ —m|
LY Jr‘-".ll A J”JJ

The bounce mapping, M is usually non-linear. M is area preserving, and in terms of the variables
5, p, l.e.

[ &s, O, |
s . p cs,  Op,
OGLP) _ g S0 _;’f- ~1. (4)
ANs,.py) op, Py

os, Op,

In order to show that the billiard mapping M is area preserving, we have to evaluate the derivatives
in equation (4). Referring to Figure 2, it is clear that in consequence of small initial deviations
s, .0, the deviation &s, is given by

Ox, sincL, + 08 sinct, = p, (05, + Oy ) (5)
The angles are related by

oo, +0y, =0y, —ou, (6)

To obtain these relations in terms of s and p, we invoked equations (1) and (2), and
after some manipulations,

: h'"pl J [E]"ll 'f{h\'“ lﬁ'\-i ’J'{'b‘l'}{] \[ﬁ.ﬁ'ﬂ ] [ '5."&” \Ii (TJ
) =l . i ) N ) = .H‘J'| 0. [
Sp1 ) \8p1/8sg dp1/dpg J 5P 6p( )
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and the deviation matrix m, , is

| —sina, g Pu “Pu |
- sina,  sinoy Ry ) sino, sina, (8)

LG —Pu___, sina, +Ei_na[, —%iﬂﬂ.] s Po; '

B R{Hf [r}Rm"t ) R(w{r) H(‘I" ) SINQ,, Hll"lﬁnff[ll.f, )_'

Figure 2. Geometry of deviation

After N bounces, deviations accumulate by successive multiplication of matrices of
the form (8). In particular, for an N-bounce closed orbit the matrix m,, is given in terms of
the bounce geometry by

My = M (M endl 1 1 o (9)

There are three possibilities in which the orbit can be generated by the iterations of M.

These orbits can be explored in phase space and will be considered in the later section. The
three possibilities included:

1) A finite set of N points §,, P,:8,, P,s.38,_,» Py, May be encountered
repeatedly, (close after N bounces). Such a closed orbit satisfies

('qrrr.‘-‘ J = ﬂ{f .\-'[ SH J - ['\1.'.' ] (]D‘J
prrn"- p.r.' f-]”
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2) The iterations of s, p, may fill a smooth curve in phase space, the whole

curve maps onto itself under M.

3) The iterations of may fill an area in phase space. This will happens when the
orbit, evolves in a chaotic manner whose detail is sensitively dependent on the
values of and .

With reference to Figure 1, the mapping equations considered before can be found in
terms of W, ¢r. The slope of the trajectory segment beginning W, .0t at is given by the
quotient of x and y increments around the curve between \y jand v, . Therefore two mapping
equations will be generated as below

r “ 1

[E'R{w]sinwtmr j[f R(y ) cosydy J = tan(y, +a,) (11)

x

and

o, =\, =, =, (12)

STABILITY OF CLOSED ORBIT

The closed orbits, which satisfy equation (10), may be stable or unstable. When s,

and p, have returned to their starting point, after NV iterations, the deviations ds, and dp,,

of the nearby orbit will be [ 5s. ) [ 5.

) J:m_\. P J
op, xhﬁu (13)

The stability of orbits depends on the eigenvalues of m,, ,i.e. A_. The eigenvalues, A_ .

I ~ .1 I-, 1%F 1 ~
M, = _{?,_my i[(?"f'm\ } _4] 2 ‘L are given in terms of the trace
2 of m, by the following.

(14)

where

—

| siner, sino, Pu B Pu
sino,  sine, sino R(w, ) sine Ry )

35



Loo, B. Wand Zuinal, A A

There are three possibilities in determining the stability of an orbit:
(i) If [Trm, | < 2, it follows from (14) that A, are complex conjugates A=t

If jincreases, A’ will approach to zero and remain bounded, therefore the

orhit is stable.

(ii) If Trm, > 2, it follows from (14) that are real , the positive exponent show

that almost all deviations grow exponentially, therefore the orbit is unstable.

(1) [f both eigenvalues are +1 or —1. The deviations grow linearly; and thus in
this case the orbit has neutral stability.
For the diametrical two-bounce orbit with impacts on the opposite sides of C

at normal incidence (o, =, = -t , p, = p, =0 ), if the radii of curvature R are the

same at both impacts, and if the length of each trajectory segment is p, then it follows from (8)
and (9) that the stability conditions are:

P [ =0 instability,

LA (15)
2R 1 <0 stabiliry.

Now we consider the motion of a particle moving in the circular billiard. When Cis a
circle, the radius of curvature R( ) is independent of ¥. In order to find the sequence of
the positions (s) and tangential momentums (p) after each impact, mapping equations will be
used to find and then followed by the conversion to s and p. The procedure is as follows.
Based on equations (11) and (12), and since R(Y/ ) is a conslant,

cosy, cos(iy,, + o, ) +siny, sin(y, + o) = cosy, cos(y, +a,)+siny, sin(y, +a,),

"IH'I - w[] + 20‘.'“.
From (12},

o, =y, -, —0,.

The conversion to s, p terms, according to (1) and (2), are

5= R{w}{W| —W..)+ Sis

P, = Cosa,.
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When ¢ is an irrational submultiple of 7, an orbit will never repeats but continually
hits C at different points s, . This will eventually filling an annulus within C. In phase space,

the iterations of s, p will fill the invariant curve p = cose, as in Figure 3,

When €, is a rational submultiple of 7, in the phase space the iterations of s, p repeatedly

return 1o N points on the line p = cosmK N . Forexample if of = 37 5, the iterations of s, p

will return to the same place after five bounces (as shown in Figure 4). Therefore this orbit will
close after five times of impact. It can be shown that the closed orbits in a circular billiard have
neutral stability.

Figure 3. Phase space trajectory for orbit with Figure 4. Phase space trajectory for

¢ is an irrational submultiple of orbit generated by o« =37 5.

STADIA-BILLIARD

Bunimovich (1974) has proved that the stadia is ergodic in nature. Ergodic theory is a
statistical study of complex dynamical system first proposed by Maxwell, Boltzman, Gibbs,
and Poincaré (example Arnold & Avez, 1968). In general terms, ergodic theory can be thought
of as understanding the behaviour of typical orbits.

To illustrate that the stadia is ergodic, we generate the computation as follows. From (11) and
(12), we obtain

n -
100°

o, =y -y, -,

§ = Wl -V, +'!"'u'

Y, =20, +y, +

P, =Cosa,.
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Iterations of 900 to 5000 times of the above computations with different 1], followed
by plotting the phase spaces will yield the results as shown in Figure 5. The ergodic billiard
will cause the mapping of s, p come arbitrarily close to every point in phase space.

There exists a family of two-bounce non-isolated closed orbits formed by perpendicular
impacts on the straight section of C. The existence of the two holes in Figure 5(d) is connected
with the family of two-bounces non-isolated closed orbits. The phenomenon of resonance
indicates that the amplitude is a maximum when the frequencies are the same, where @, = @,
(example Kibble & Berkshire, 1996). In our case, when the frequency of straight line impacts
with p = 0, is almost the same with the frequency of impact with dp , the orbit will resonate,
resulting the holes in phase space. It can be shown that this long closed two-bounce orbit is
unstable.

i}

(a) (b)

Figure 5. Phase spaces of stadia-billiard for (a), (b), (¢) with 11 =0.001, 0.01, 0.1
respectively with 900 bounces; and (d) 77 = 1 with 5000 bounces.
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ELLIPTICAL BILLIARD

An ellipse is a sort of elongated circle that is the intersection of a circular conical surface and a
plane that cuts the surface in a single closed curve (see example James, 1992). The parametric
equations of elliptical billiard are as follows (example Berry, 1981):

x = acosh M cos i .

16
v = asinh M sinA. o
The foci lie at x =*a, y =0 and radius is
¢ cosh M sinh M
Rlp) = s ‘ — .
(cosh™ M sin“y +sinh™ M cos™y ) * (17)
the eccentricity e of the ellipse is
e=(coshm ). (18)
The parameter J is related to the direction ¥ by
’ Cdy
A= (19)
—tanh M cot & .
Using the equations (11), (16), (17), (18) and (19), we generate a cont in Figure 6.

Actually this plot illustrates two kinds of orbit. There are orbits, which bounce all around C,
exploring all values of s whilst repeatedly touching an ellipse, and there are orbits, which
bounce across C and exploring a restricted range of s whilst repeatedly touching a hyperbola
(Loo, 2001). There are some invariant curves as shown in the figure. Along some of these
invariant curves, motion of particle will be regular (periodic) as in the case of the circular
billiard and neutral stability is assumed.

Figure 6. Contour of elliptical billiard mapping.
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OVAL-BILLIARD

Let us consider the simplest deformation of a circle into an oval is assumed to be the
following form (example Kibble & Berkshire, 1996)

Ry ) =a+ad cos2y
=a(l+& cosy ). (20)

We can determine the Cartesian coordinates as follows.
... l. .
x(y)y=a[(l+ 7{) )sinyr + f)h sin |,

viy)=al(-1+ ii‘i]msw -:_IE: cos Ay |, (21)

To plot a phase space trajectory of a particle bouncing inside an oval-billiard (see Loo,
2001), we start from equation (11}, together with (20) and (21), and obtain

cos(y/ , + o, =\, }-v-%ﬁ cos(y, +ot, +y, )+ éb‘- cos(dy, —y, —a,)

=cos(a, )~ %::] cos(2y, +a,)+ %ﬁ cos(2y, —a, ).

Some notion of the richness of orbital structure for generic billiards can be obtained from
Figure 7 which portrays the magnification of oval billiard mapping with d = 0.3 under 600 of
iterations. Resolving this equation required high precision: it was necessary to solve the mapping
equation (11) for ¥, to one partin 225 (as observed by Berry, 1981). From Figure 7, we can

observe that the chaotic area occurred around 3.09 < s < 3.24 and the other area filled with
invariant curves. This showed that the motion of particle in oval-billiard displayed the generic
property since the feature of regularity and chaos co-exist in the oval-billiard. From relations
(15), (20) and (21), it can be shown that for the oval-billiard, the closed orbit of short diameter
is stable and whilst for long diameter is unstable,
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Figure 7. Magnification of oval billiard mapping under 600 of iterations (inset:
further magnification of right-most minute formation).

CONCLUSION

In this note, we have investigated four types of billiard, which are the circular, stadia,
elliptical and oval billiards, via certain computer algebra systems. Depending on the shape of
the closed curve C, this billiard system is observed to exhibit very different behaviours. When
the curve C (billiard) is circular, the s-p space is covered with invariant curves (an invariant
curve in phase space means that the motion of particle is regular). When the shape of the
billiard is a stadia, almost all orbits explore almost all s, p values. Consequently this resulted in
the unpredictable (chaotic) motions. Elliptical billiard, instead generated motions entirely
confined to invariant curves. While oval billiard rendered motions in which the phase space is
filled with chaotic areas as well as covered with invariant curves. Finally, we have illustrated in
this note the co-existing behaviours of regularity and chaos in classical mechanics via a
fundamental example 1.e. the billiard system.
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