COMPARATIVE STUDY ON SELECTED PHYSICO-CHEMICAL PROPERTIES OF PACKED PALM-BASED COOKING OILS

Nur Aainaa Syahirah Ramli*, Mohd Azmil Mohd Noor, Fadzlina Abdullah
Quality and Environmental Assessment Unit, Advanced Oleochemical Technology Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran
Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.

*Corresponding author. Email: aainaa.syahirah@mpob.gov.my

Received 4th May 2021 ; accepted 15nd November 2021
Available online 20th December 2021

ABSTRACT. Cooking oils are used for daily cooking as well as salad dressing, in processed food, and other various uses. The physico-chemical properties of cooking oils can affect the quality of foods and hence must be evaluated. The aim of the present study was to evaluate the physicochemical properties of palm-based cooking oils (refined, bleached and deodorized (RBD) palm olein). The analyses were conducted on a total of 20 different brands of cooking oil packed in plastic pouches, which were randomly chosen from a local market. The physico-chemical properties of the cooking oils investigated include moisture and impurities (MI), iodine value (IV), peroxide value (PV), slip melting point (SMP), Lovibond colour, and free fatty acid (FFA). The properties were compared with known standards for refined oils such as Malaysian Standard and Codex Alimentarius Standard. Analysis showed that MI, IV, and SMP of all brands were within the requirements set by Malaysian Standard for RBD palm olein. The PV, Lovibond colour, and FFA values of several brands deviated from the Malaysian Standard. Meanwhile, the PV and FFA of all brands of the cooking oil tested were within the value designated by the Codex Standards. The physico-chemical properties of RBD palm olein cooking oils tested in this study were of acceptable and good quality and are considered suitable for consumption. The quality of cooking oil should be regularly monitored to avoid the use of adulterated oil.

KEYWORDS. RBD palm olein, cooking oil, physico-chemical properties, plastic pouch packed

Download Manuscript (Right-click and Save As)

REFERENCES

  • Abdellah, A. M., & Ishag, K. E. N. A. (2012). Effect of storage packaging on sunflower oil oxidative stability. American Journal of Food Technology, 7(11), 700-707.
  • Abdullah, F., Ismail, R., Ghazali, R., & Idris, Z. (2018). Total phenolic contents and antioxidant activity of palm oils and palm kernel oils at various refining processes. Journal of Oil Palm Research, 30(4), 682 – 692.
  • Addinsoft. (2019). XLSTAT statistical and data analysis solution. In). Boston, USA: https://www.xlstat.com.
  • Agbaire, P. O. (2012). Quality assessment of palm oil sold in some major markets in Delta State, southern Nigeria. African Journal of Food Science and Technology, 3(9), 223-226.
  • Alimentarus, C. (1999). Codex Standard for Named Vegetable Oils. CODEX STAN 210-1999. Rome, Italy.
  • American Oil Chemists’ Society, & Mehlenbacher, V. C. (2004). Official Methods and Recommended Practices of the AOCS: American Oil Chemists’ Society.
  • Cao, G., Ruan, D., Chen, Z., Hong, Y., & Cai, Z. (2017). Recent developments and applications of mass spectrometry for the quality and safety assessment of cooking oil. TrAC Trends in Analytical Chemistry, 96, 201-211.
  • Chigbogu, M. P., Jonathan, E. I., Onyenankeya, E. I., & Ikechukwu, O. S. (2015). Evaluation of the quality and level of adulteration of palm oil obtained from different locations in Enugu Metropolis, Nigeria. International Journal of Multidisciplinary Sciences and Engineering, 6(6), 23-26.
  • Chong, C. L. (2012). 15 – Measurement and maintenance of palm oil quality. In Palm oil : production, processing, characterization, and uses, (pp. 431-470): AOCS Press.
  • Department of Standards Malaysia. (2007). MS 816: Palm olein – specification (Second revision) (Vol. ICS: 67.200.10): Standards Malaysia.
  • Endo, Y. (2018). Analytical methods to evaluate the quality of edible fats and oils: The JOCS standard methods for analysis of fats, oils and related materials (2013) and advanced methods. Journal of Oleo Science, 67(1), 1-10.
  • Fuentes, P. H. A., do Prado, A. C. P., Ogliari, P., Deschamps, F. C., BarreraArellano, D., Bolini, H. M. A., & Block, J. M. (2013). Evaluation of physico-chemical and sensory quality during storage of soybean and canola oils packaged in PET bottles. Journal of the American Oil Chemists’ Society, 90(5), 619-629.
  • Hassim, N. A. M., Ismail, N. H., Kanagaratnam, S., Isa, W. R. A., & Dian, N. L. H. M. (2021). Quality of commercial palm-based cooking oil packed in plastic pouch and polyethylene terephthalate (PET) bottle. Journal of Oil Palm Research, 33, 493-513.
  • Hotchkiss, J. H. (1995). Overview on chemical interactions between food and packaging materials. In P. Ackermann, M. Jäerstad & T. Ohlsson (Eds.), Foods and packaging materials : chemical interactions, (pp. 3-11): Cambridge : Royal Society of Chemistry.
  • Imran, M., & Nadeem, M. (2015). Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends. Lipids in Health and Disease, 14(1), 138-148.
  • International Organization for Standardization, I. (1998). 662 – Animal and vegetable fats and oils – – Determination of moisture and volatile matter content. In, vol. 662). Switzerland.
  • Kaleem, A., Aziz, S., Iqtedar, M., Abdullah, R., Aftab, M., Rashid, F., Shakoori, F. R., & Naz, S. (2015). Investigating changes and effect of peroxide values in cooking oils subject to light and heat. FUUAST Journal of Biology, 5(2), 191-196.
  • Khor, Y. P., Sim, B. I., Abas, F., Lai, O. M., Wang, Y., Wang, Y., & Ping Tan, C. (2019). Quality profile determination of palm olein: potential markers for the detection of recycled cooking oils. International Journal of Food Properties, 22(1), 1172-1182.
  • Kucuk, M., & Caner, C. (2005). Effect of packaging materials and storage conditions on sunflower oil quality. Journal of Food Lipids, 12(3), 222-231.
  • Kuntom, A. (2005). MPOB Test Methods: A Compendium of Test[s] on Palm Oil Products, Palm Kernel Products, Fatty Acids, Food Related Products and Others: Malaysian Palm Oil Board, Ministry of Plantation Industries and Commodities Malaysia.
  • Lin, S. W. (2002). Palm Oil. In F. D. Gunstone (Ed.), Vegetable oils in food technology: Composition, properties and uses, vol. 6 (pp. 59-97): Blackwell.
  • Mehmood, T., Ahmad, A., Ahmed, A., & Khalid, N. (2012). Quality evaluation and safety assessment of different cooking oils available in Pakistan. Journal of The Chemical Society of Pakistan, 34(3), 518-525.
  • Méndez, A. I., & Falqué, E. (2007). Effect of storage time and container type on the quality of extra-virgin olive oil. Food Control, 18(5), 521-529.
  • Mengistie, T., Alemu, A., & Mekonnen, A. (2018). Comparison of physicochemical properties of edible vegetable oils commercially available in Bahir Dar, Ethiopia. Chemistry International, 4(2), 130-135.
  • MPOB. (2009). Code of Practice for the Category of Palm Oil Dealers – Packing of Palm OleinBased Cooking Oil: Malaysian Palm Oil Board.
  • Muneeshwari, P., Hemalatha, G., Kanchana, S., Pushpa, G., Mini, M. L., & Chidambaranathan, N. (2017). Physico chemical quality and stability of refined and virgin oils. International Journal of Pure & Applied Bioscience, 5(2), 1182-1191.
  • Nangbes, J. G., Nvau, J. B., Buba, W. M., & Zukdimma, A. N. (2013). Extraction and characterization of castor (ricinus communis) seed oil. The International Journal Of Engineering And Science, 2(9), 105-109.
  • Narasimhan, S., Rajalakshmi, D., Chand, N., Mahadeviah, B., & Indiramma, A. R. (2001). Palm oil quality in different packaging materials sensory and physicochemical parameters. Journal of the American Oil Chemists’ Society, 78(3), 257-265.
  • O’Brien, R. D. (2004). 3 – Fats and oils analysis. In Fats and Oils: Formulating and Processing for Applications, Second Edition, (pp. 189 – 248): CRC Press.
  • Okparanta, S., Daminabo, V., & Solomon, L. (2018). Assessment of rancidity and other physicochemical properties of edible oils (mustard and corn oils) stored at room temperature. Journal of Food and Nutrition Sciences, 6(3), 70 – 77.
  • Piscopo, A., & Poiana, M. (2012). Packaging and storage of olive oil. In I. Muzzalupo (Ed.), Olive Germplasm, the Olive Cultivation, Table Olive and Olive Oil Industry in Italy, (pp. 217– 218). Hong Kong, China: In Tech.
  • Ramli, N. A. S., Mohd Noor, M. A., Musa, H., & Ghazali, R. (2018). Stability evaluation of quality parameters for palm oil products at low temperature storage. Journal of the Science of Food and Agriculture, 98(9), 3351 – 3362.
  • Robertson, G. L. (2012). Food Packaging: Principles and Practice, Third Edition: Taylor & Francis.
  • Sun, H., Lu, L. X., Ge, C. F., & Tang, Y. L. (2015). Effect of packaging films on the quality of canola oil under photooxidation conditions. Mathematical Problems in Engineering, 2015, 6.
  • Tesfaye, B., & Abebaw, A. (2016). Physico-chemical characteristics and level of some selected metal in edible oils. Advances in Chemistry, 2016, 1-7.
  • Yee, T. P., Loganathan, R., & Tiu, T. K. (2018). Oxidative changes in repeatedly heated vegetable oils. Journal of Oil Palm Research, 30, 635 – 641.

PHYSICAL PROPERTIES OF PALM-BASED METHYL ESTER SULPHONATE (MES) SURFACTANT

Fadzlina Abdullah1*, Nur Aainaa Syahirah Ramli1, Fumiya Niikura2 And Zulina Abd. Maurad1
1Advanced Oleochemical Technology Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43 000 Kajang, Selangor, Malaysia
2Functional Material Science Research Laboratory, Lion Corporation, 2-1 Hirai 7-Chome, Edogawa-ku, Tokyo 132-0035, Japan. *Corresponding author : fadzlina@mpob.gov.my

Received 8th May 2021 ; accepted 18nd October 2021
Available online 20th December 2021

ABSTRACT. Palm-based methyl ester sulphonate (MES) is an anionic surfactant derived from renewable resources by sulphonation of palm methyl ester with sulphur trioxide and can be used as an alternative to the conventional linear alkylbenzenesulphonate. MES has been shown to possess favourable environmental characteristics, water hardness tolerance, with excellent detergency and foaming properties that are useful in detergent industry. Due to its great potential as surfactant in consumer products, it is crucial to determine its physical properties to protect consumer safety and the ecosystem. Physical properties are important aspects of a chemical because they play a significant role in determining its possible applications. Therefore, this study aims to determine the physical properties of various homologues of palm-based MES, such as C12-, C14-, C16-, and C16:18MES. The selected physical properties included physical appearance (form, colour, and odour), functional groups via Fourier-transform infrared (FTIR) spectroscopy, density, melting point, and flammability. The sulphonation process to produce MES was confirmed through sulphonationcation interactions from the FTIR spectra. A better understanding of the properties and applicability of MES in different areas can be assessed through the study of their physical properties. Information on these properties is important, whereby the specifications of palm-based MES can be used to find the best formulation for its applications and support the regulatory requirements of importing countries, e.g., Registration, Evaluation, Authorisation and Restriction of Chemicals (REACh), to facilitate market penetration.

KEYWORDS.Anionic surfactant; Palm-based; methyl ester sulphonate; Detergent; properties.

Download Manuscript (Right-Click and Save As)

REFERENCES

  • Agency, E. C. (2012). Practical Guide 3: How to report robust study summaries. https://echa.europa.eu/documents/10162/13643/pg_report_robust_study_summaries_en.pdf, accessed on 22 January 2019.
  • American Oil Chemists’ Society and Mehlenbacher, V. C. (2004).Official Methods and Recommended Practices of the AOCS, American Oil Chemists’ Society.https://www.aocs.org/attain-lab-services/methods/methods/search, accessed on 3 February 2019.
  • Ariba, H; Wang, Y; Devouge-Boyer, C; Stateva, R P and Leveneur, S (2020). Physicochemical properties for the reaction systems: Levulinic acid, its esters, and γ-valerolactone. Journal of Chemical & Engineering Data, 65: 3008-3020.
  • ASTM D4251 – 89 (2016), Standard Test Method for Active Matter in Anionic Surfactants by Potentiometric Titration.https://www.astm.org/Standards/D4251.htm, assessed on 7 January 2019.
  • Cihák, R. (2009). REACh – an overview. Interdisciplinary toxicology, 2: 42 – 44.
  • Cocchi, M., Foca, G., Lucisano, M., Marchetti, A., Pagani, M. A., Tassi, L., &Ulrici, A. (2004). Classification of cereal flours by chemometric analysis of MIR spectra. Journal of Agricultural and Food Chemistry, 52: 1062 – 1067.
  • Dir 92/69/EEC European Economic Community (O.J. L Official Journal of the European Communities No. L 383 A) A.10. Flammability (Solids). Annex V Testing Methods.
  • Elraies, K.A.; Tan, I.; Awang, M.; Saaid, I. (2010). The synthesis and performance of sodium methyl ester sulfonate for enhanced oil recovery. Pet. Sci. Technol. 2010, 28, 1799 – 1806. http://dx.doi.org/10.1080/10916460903226072
  • Ghazali, R. (2002). The effect of disalt on the biodegradability of methyl ester sulphonates (MES).Journal of Oil Palm Research, 14: 45 – 50.
  • Ghazali, R., Awang, R., Cheong, K. W., Basri, M., Ismail, R., & Ahmad, S. (2004). Alkanolamides from 9, 10-dihyroxystearic acid.Journal of Oil Palm Research, 18: 231 – 238.
  • Ghazali, R, Zolkarnain, N., Mohd Noor, M. A., Ishak, S. A., Musa, H., Abdullah, F., Shaari, A. L., &Roslan, N. A. (2019). MPOB’s Role in Sustaining Quality and Environmental Competitiveness of Malaysian OleochemicalIndustr.Palm Oil Developments, 71: 4 – 12.
  • Global Market Insight (2020).Fatty methyl ester sulphonate market size, industry analysis report, regional outlook, application development potential, price trends, competitive market share & forecast, 2019-2025.https://www.gminsights.com/industry-analysis/fatty-methyl-estersulphonatemarket, accessed on 17 February 2020.
  • Hesse, M., Meier, H., &Zeeh, B. (1997). Spectroscopic Methods in Organic Chemistry New York, George Thieme.https://doi.org/10.1002/pauz.19970260516, assessed on 2 September 2019.
  • James A. Kent (2015). Soap, Fatty Acids, and Synthetic Detergents. Riegel’s Handbook of Industrial Chemistry, p 1098 – 1140.
  • Jin, Y.; Tian, S.; Guo, J.; Ren, X.; Li, X.; Gao, S. (2016). Synthesis, characterization and exploratory application of anionic surfactant fatty acid methyl ester sulfonate from waste cooking oil. Journal Surfactants Detergent. 19, 467 – 475. http://dx.doi.org/10.1007/s11743-016-1813-z
  • Khaled Abdalla, E., & Isa, M. T. (2012). The application of a new polymeric surfactant for chemical EOR.In: ROMERO-ZERÓN, L. (ed.) Introduction to Enhanced Oil Recovery (EOR) Processes and Bioremediation of Oil-Contaminated Sites. Intech Open, 45 – 70.
  • Mat Dian, N. L. H., Sundram, K., &Idris, N. A. (2006).DSC study on the melting properties of palm oil, sunflower oil, and palm kernel olein blends before and after chemical interesterification.Journal of the American Oil Chemists’ Society, 83: 739 – 745.
  • Md. Ali, A. R., &Dimick, P. S. (1994). Thermal Analysis of Palm Mid-Fraction, Cocoa Butter, and Milk Fat Blends by Differential Scanning Calorimetry, Journal of the American Oil Chemists’ Society, 71: 299 – 302.
  • Maurad, Z. A., Ghazali, R., Siwayanan, P., Ismail, Z., &Ahmad, S. (2006). Alpha-sulfonated methyl ester as an active ingredient in palm-based powder detergents.Journal of Surfactants
    and Detergents, 9: 161 – 167.
  • Maurad, Z. A., Idris, Z., &Ghazali, R. (2017).Performance of palm-based methyl ester sulphonate (MES) in liquid detergent formulation.Journal of Oleo Science, 66: 677 – 687. DOI: 10.5650/jos.ess16190.
  • Naseska, M. (2016).Fourier transform infrared spectroscopy. Department of Low and Medium Energy Physics-F2, Josef Stefan Institute, University of Ljubljana, Slovenia, 1 – 12.
  • OECD TG 109 Guidelines for the Testing of Chemicals Method 109 Density of Liquids and Solids. Updated Guideline, adopted by the Council on 27th July 1995. p 1 – 5.
  • OECD TG 102 Guideline for the Testing of Chemicals Method 102 Melting Point/Melting Range. Updated Guideline, adopted by the Council on 27th July 1995. p 1 – 8.
  • Parveez, A. G. K., Hishamuddin, E., Loh, S. K., Meilina, O. A., Kamalrudin, M. S., Zainal, B. M. N., Aldrin, Z. A. H., Shamala, S., &Zainab, I. (2020). Oil Palm Economic Performance In Malaysia and R&D Progress in 2019. Journal of Oil Palm Research, 32(2), 159 – 190. https://doi.org/10.21894/jopr.2020.0032
  • Permadani, R. L., Ibadurrohman, M., & Slamet (2018). Utilization of waste cooking oil as raw material for synthesis of methyl ester sulfonates (MES) surfactant. IOP Conference Series: Earth and Environmental Science, 105: 012036. [012036]. https://doi.org/10.1088/1755- 1315/105/1/012036.
  • Registration, Evaluation, Authorisation and Restriction of Chemicals (REACh) (2006). 7. Information on the physicochemical properties of the substance. https://reachonline.eu/reach/en/annex-vii-7.html, assessed on 15 May 2019.
  • Registration, Evaluation, Authorisation and Restriction of Chemicals (REACh) (2019). Physicochemical data requirements. http://www.prc.cnrs.fr/reach/en/physicochemical_data.html, accessed 5 August 2020.
  • Salmiah, A., Zahariah, I., & Jasmin, S. (1998). Palm Based Sulphonated Methyl Esters and Soap. Journal of Oil Palm Research, 10(1), P 15 – 34.
  • Satsuki, T., Umehara, K., & Yoneyama, Y. (1992). Performance and physicochemical properties of α-sulfo fatty acid methyl esters. Journal of the American Oil Chemists’ Society, 69: 672- 677. https://doi.org/10.1007/BF02635808.
  • Silverstein, R. M. Bassler, G.C. (1962). Spectrometric identification of organic compounds. J. Chem. Educ. 39, 546. http://dx.doi.org/10.1021/ed039p546
  • Smulders, E., Rybinski, W. V., Sung, E., Rähse, W., Steber, J., Wiebel, F. and Norskog, A. (2007). “Laundry Detergents” in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim. DOI: 10.1002/14356007.a08_315.pub2
  • Tolstorebrov, I., Eikevik, T. M., & Bantle, M. (2014). A DSC determination of phase transitions and liquid fraction in fish oils and mixtures of triacylglycerides.Food Research International, 58: 132 – 140.
  • Vanderley José, P. João Paulo Arantes Rodrigues da, C., Tâmara Prado de, M., João Paulo Ribeiro de, O., & João Batista de, M. (2016). Physical-chemical properties of pesticides: concepts, applications, and interactions with the environment. Bioscience Journal, 32(3): 627 – 641.
  • Weil, J.; Bistline, R.; Stirton, A. (1953). Sodium Salts of Alkyl Alpha-Sulfopalmitates and Stearates; Amer Chemical Soc 1155 16TH ST, NW 20036; Amer Chemical Soc: Washington, DC, USA, p. 4859 – 4860.
  • Zulina A. M., Luqman C. A., Mohd S. A., Nor Nadiah A. K. S. & Zainab I. (2020). Preparation, Characterization, Morphological and Particle Properties of Crystallized Palm-Based Methyl Ester Sulphonates (MES) Powder. Molecules MDPI, 25, 2629; doi:10.3390/molecules25112629

FLORISTIC COMMUNITY COMPOSITION IN RAFFLESIA’S HABITAT AT KINABALU PARK, SABAH

Rasyidah Wahab1, Kartini Saibeh2, Shamsul Khamis3, Handry Mujih4, Geofarry Gunsalam4Dasini4, Ezron Gerald5, Rayzigerson Rodney Chai1, Mohd Fadil6, Venly6, Federica Karolus6

1Institute of Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
2Faculty of Tropical Forestry, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
3Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
4Herbarium, Botany Section, Reseacrh and Education Division, P.O. Box 10626, 88806, Kota Kinabalu, Sabah, Malaysia.
5Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
6Danum Valley Field Centre, Block 3, Ground Floor, MDLD 3286/3287, Fajar Centre, 91112, Lahad Datu, Sabah, Malaysia. Email: rasyidahj@yahoo.com

Received 9th Julai 2021 ; accepted 15nd August 2021
Available online 20th December 2021

ABSTRACT. In the vicinity of Kinabalu Park, Sabah, a study was conducted to determine the plant community and its composition in the habitat of Rafflesia sp. and its host, Tetrastigma sp. A total of 5 circular-shaped plots each with a fixed radius of 20 meters, were located around Kinabalu Park, namely in Losou Podi, Losou Minunsud, Sayap Substation, Langanan and Gansurai. The Rafflesia species detected in Kinabalu Park during the present study were Rafflesia pricei and R. keithii. Overall, 19 Rafflesia individuals were detected, which comprised of 3 flowers and 16 buds. A total of 20 scars from former dead flowers and buds were obtained on the host, where they possessed an average diameter of 2.2-4.8 cm from the five plots. There were 778 individuals recorded for plant community, belonging to 111 genera, 53 families and 250 species. The total tree density was 1238 individuals/ha, where the family Lauraceae (11.05%) had the highest individuals followed by Annonaceae (8.61%). Although the species Baccaurea lanceolata were found in all study plots, the species Xantophyllum macrophyllum has the most individuals detected (3.60%) in the plant community habitats. The value of the Shannon-Wiener Index was H’=3.23 and the Evenness Index is low, E=0.10. The percentage of family similarity between plots was high (SBC=70.19–48.23%), but the percentage of species similarity between plots was very low (SJ=4.31–1.54%). This study shows that both the species of Xanthophyllum macrophyllum and Baccaurea lanceolata have a relationship with the habitat ofRafflesia in Kinabalu Park, as both species were located nearest to the Rafflesia’s host. Moreover, these two species were seen to be well associated with Tetrastigma since the Tetrastigma was observed to climb several trees of these species in the plot.

KEYWORDS. Ecology, Kinabalu Park, plant community, Rafflesia, Tetrastigma.

Download Manuscript (Right-Click and Save As)

REFERENCES

  • Aiba, S., & Kitayama, K. (2020). Light and nutrient limitations for tree growth on young versus old soils in a Bornean tropical montane forest. Journal of Plant Research, 133(5), 665–679. https://doi.org/10.1007/s10265-020-01217-9
  • Akhriadi, P. (2010). Assessment of conservation status of Rafflesia in West Sumatra, Indonesia.
  • Ali, M. A., Ikmat, A., & Zuhud, E. A. M. (2015). Kajian karakteristik habitat Rafflesia (Rafflesia patma Blume) di Cagar Alam Bojonglarang Jayanti, Cianjur, Jawa Barat. Media Konservasi20(1), 9–14.
  • Baltzer, J. L., Thomas, S. C., Nilus, R., & Burslem, D. F. R. P. (2005). Edaphic specialization in tropical trees: Physiological correlates and responses to reciprocal transplantation. Ecology,
    86(11), 3063–3077. https://doi.org/10.1890/04-0598
  • Barcelona, J. F., Pelser, P. B., Balete, D. S., & Co, L. L. (2009). Taxonomy, ecology, and conservation status of Philippine Rafflesia (Rafflesiaceae). Blumea: Journal of Plant Taxonomy and Plant Geography, 54(1–3), 77–93.
  • Beaman, J. H., & Anderson, C. (2001). The Plants of Mount Kinabalu. 5. Natural History Publication (Borneo), Sabah. The Royal Botanical Gardens, Kew.Beaman, J. H., Anderson, C., & Beaman, R. S. (2001). The Plants of Mount Kinabalu. 4. Natural History Publication (Borneo), Sabah.
  • The Royal Botanical Gardens, Kew. Bridson, D., & Forman, L. (1998). The Herbarium Handbook (Third Edit).
  • Royal Botanical Gardens KEW. Erlinda, A., Iskandar, & Widiastuti, T. (2018).
  • Karakteristik Habitat Rafflesia (Rafflesia tuan-mudae) Di Gunung Poteng Cagar Alam Raya Pasi Kalimantan Barat. Journal Hutan Lestari, 6, 708– 713.
  • Farah Khaliz, K., Zulhazman, H., Nur Sayzwani, S., Siti Hajar, Y., Nur Kyariatul Syafinie, A.M., Nasihah, M., & Siti Fatimah, A. (2018). Distribution and ecology of Rafflesia in Royal belum.
    International Journal of Engineering & Technology, 7(2.29), 292–296.
  • Fill, J. M., Glitzenstein, J. S., Streng, D. R., Stowe, J., & Mousseau, T. A. (2017). Wiregrass (Aristida beyrichiana) May Limit Woody Plant Encroachment in Longleaf Pine (Pinus palustris) Ecosystems. The American Midland Naturalist, 177(1), 153–161.
  • Ghollasimood, S., Faridah-Hanum, I., Nazre, M., & Kamziah, A. K. (2012). Abundance and Distribution of Climbers in a Coastal Hill Forest in Perak, Malaysia. Journal of Agricultural
    Science, 4(5), 245–254. https://doi.org/10.5539/jas.v4n5p245
  • Harris, J. B. C., Yong, D. L., Sheldon, F. H., Boyce, A., Eaton, J., Bernard, H., … Wei, D. (2012). Using Diverse data source to detect elevational range changes of birds on Mount Kinabalu, Malaysia Borneo. The Raffles Bulletin of Zoology, 25.
  • Harris, J. G., & Harris, M. W. (1994). Plant Identification Terminology Glossary.pdf.
  • Hazimah, D., Metali, F., & Sukri, R. S. (2015). Tree diversity and community composition of the tutong white sands, Brunei darussalam: A rare tropical heath forest ecosystem. International
    Journal of Ecology, 2015.
  • Hikmat, A. (2006). Kecenderungan Populasi Rafflesia zollingeriana Kds. Di Taman Nasioanal Meru Betiri, Jawa Timur. Media Konservasi, XI(3), 105–108.
  • Jabatan Perhutanan Sabah. (2005). Forestry in Sabah: Commemorative Edition.
  • Laksana, I., Syarifuddin, A., & Aryanti, N. A. (2018). Habitat Rafflesia (Rafllesia zollingeriana Kds.) Di Blok Krecek Resort Bandealit. Journal of Forest Science Avicennia, 01(01), 30–39.
  • Lathifah, S. S., Reynaldy, A., Rahma, A., Destiani, E., & Hardianti, N. F. (2018). Keanekaragaman vegetasi tingkat pohon di Hutan Evergreen Blok Sumberejo Taman Nasional Bali Barat. Seminar Nasional Dan Diskusi Panel Multidisiplin Hasil Penelitian & Pengabdian Kepada Masyarakat, 47–54.
  • Latiff, A., & Mat-Salleh, K. (1991). Rafflesia. In: R. Kiew (ed.). The State of Nature Conservation in Malaysia. Malayan Nature Society, Kuala Lumpur and the International Development and Research Centre of Canada.
  • Magurran, A. E. (2004). Ecological Diversity and Its Measurement. Blackwell Publishing.
  • Mat-Salleh, K., Mahyuni, R., & Susatya, A. (2011). Rafflesia lawangensis (Rafflesiaceae), a New Species from Bukit Lawang, Gunung Leuser National Park, North Sumatra, Indonesia. Reinwardtia, 13(2), 159–165.
  • Meijer, W. (1984). New species of Rafflesia (Rafflesiaceae). Blumea, 30(1), 209–215.
  • Meijer, W., & Elliotts, S. (1990). Taxonomy, ecology and conservation of Rafflesia kerrii Meijer in Southern Thailand. Nat. Hist. Bull. Siam Soc., 38, 117–133.
  • Middleton, D. J., Armstrong, K., Baba, Y., Balslev, H., Chayamarit, K., Chung, R. C. K., … Wong, K. M. (2019). Progress on Southeast Asia’s Flora projects. Gardens’ Bulletin Singapore71(2), 267–319. https://doi.org/10.26492/gbs71(2).2019-02
  • Mohd Afiq Aizat, J. (2018). Composition of plants, physicochemical soil and soil organic carbon content in forest habitat of Rafflesia Mukim Hulu Dong, Raub, Pahang. Universiti Kebangsaan Malaysia, Bangi.
  • Mursidawati, S., Irawati, & Ngatari. (2014). Rafflesia patma (Rafflesiaceae): notes on its field study, cultivation, seed germination and anatomy. Buletin Kebun Raya, 17(1), 9–14.
  • Nais, J. (2001). Rafflesia of the world. Sabah Parks and Natural History Publications (Borneo) Sdn. Bhd.
  • Newmaster, S. G., Belland, R. J., Arsenault, A., Vitt, D. H., & Stephens, T. R. (2005). The ones we left behind: Comparing plot sampling and floristic habitat sampling for estimating bryophyte diversity. Diversity and Distributions, 11(1), 57–72.
  • Nizam, M. S., Rohani, S., & Wan Juliana, W. A. (2012). Floristic variation of tree communities in two distinct habitats within a Forest Park in Pahang, Peninsular Malaysia. Sains Malaysiana41(1), 1–10.
  • Nur Hayati, A. K., Shamsul, K., Wan Juliana, W. A., Shukor, N., Shahril, M. H., & Alyaa Filza, E. (2020). Plant Community Structure and Diversity of the Rafflesia Habitat at The Royal Belum State Park, Perak, Malaysia. The Malaysian Forester, 83(2), 387–404.
  • Pranata, S., Sulistijorini, & Chikmawati, T. (2020). Habitat vegetation of Rafflesia arnoldii (Raffelsiaceae) in Panorama Baru Ngarai Sianok West Sumatra. Jurnal Kejuruteraan Dan Sains Kesihatan, 4(Ivi), 135–148.
  • Quintela-Sabarís, C., Faucon, M. P., Repin, R., Sugau, J. B., Nilus, R., Echevarria, G., & Leguédois, S. (2020). Plant functional traits on tropical ultramafic habitats affected by fire and mining: Insights for reclamation. Diversity, 12(6).
  • Rafiqpoor, M. D., & Nieder, J. (2006). Altitudinal Zonation of Climate and Vegetation in a Global Megadiversity Centre, Mount Kinabalu (North Borneo). Erdkunde, 60(4), 362–374. Retrieved from http://www.jstor.org/stable/25647923
  • Rahma, Y., Arma, S. P., & Syamsuardi. (2017). Analisis vegetasi habitat Rafflesia gadutensis Meijer. di Taman Hutan Raya Dr. M. Hatta, Kota Padang. Jurnal Metamorfosa, 4(2), 196–201.
  • Ramadhani, D. N., Setiawan, A., & Master, J. (2017). Populasi dan Kondisi Lingkungan Rafflesia arnoldii di Rhino-Camp Resort Sukaraja Atas Taman Nasional Bukit Barisan Selatan (TNBBS). Jurnal Sylva Lestari, 5(2), 128. https://doi.org/10.23960/jsl25128-141
  • Sabah Wildlife Department. (1997). Wildlife Conservation Enactment 1997 (Vol. 21).
  • Sellan, G., Thompson, J., Noreen, M., & Brearley, F. Q. (2019). Soil characteristics influence species composition and forest structure differentially among tree size classes in a Bornean heath forest. Soil Influence on Tropical Heath Forest.
  • Seopadmo, E., Saw, L. G., & Chung, R. C. K. (2002). Tree Flora of Sabah and Sarawak: Volume 4. Sabah Forestry Department, Forest Research Institute Malaysia, Sarawak Forest Department.
  • Seopadmo, E., & Wong, K. M. (1995). Tree Flora of Sabah and Sarawak: Volume 1. Sabah Forestry Department, Forest Research Institute Malaysia, Sarawak Forest Department.
  • Suwartini, R., Hikmat, A., & Zuhud, E. A. M. (2008). Kondisi vegetasi dan populasi Raflesia patma Blume di Cagar Alam Leuweung Sancang. Media Konservasi, 13(3), 1–8.
  • Ushio, M., Aiba, S. A., Tkeuchi, Y., Iida, Y., Matsuoka, S., Repin, R., & Kitayama, K. (2017). Plant – soil feedbacks and the dominance of conifers in a tropical montane forest in Borneo. Ecological Monographs, 87(1), 105–129.
  • Van der Ent, A., Erskine, P., Mulligan, D. R., Repin, R., & Karim, R. (2016). Vegetation on ultramafic edaphic ‘islands’ in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and elevation. Plant and Soil. https://doi.org/10.1007/s11104-016-2831-3
  • Van der Ent, A., Sumail, S., & Clarke, C. (2015). Habitat differentiation of obligate ultramafic Nepenthes endemic to Mount Kinabalu and Mount Tambuyukon (Sabah, Malaysia). Plant Ecology, 216(6), 789–807.
  • Wan Norqayyum Nadia, W. A. (2014). Assessment of Growth and Mortallity Rates of Rafflesia kerrii in Lojing Highlands, Kelantan, Peninsular Malaysia. Universiti Malaysia Kelantan.
  • Wiriadinata, H., & Sari, R. (2011). A New Species of Raflesia (Rafflesiaceae) From North Sumatra. Reinwardtia:A Journal On Taxonomic Botany Plant Sociology And Ecology, 13(2), 95–100.
  • Yahya, A. F., Hyun, J. O., Lee, J. H., Choi, T. B., Sun, B. Y., & Lapitan, P. G. (2010). Distribution pattern, reproductive biology, cytotaxonomic study and conservation of rafflesia manillana in mt. makiling, laguna, philippines. Journal of Tropical Forest Science, 22(2), 118–126.

PAPER WASTES AS BEDDINGS IN VERMICOMPOST PRODUCTION

Tengku Arisyah Tengku Yasim-Anuar a, John Keen, Chubo b*, and Marina, Mohd. Top @ Mohd. Tahc
a Nextgreen Pulp and Paper Sdn Bhd, R&D Department, Menara LGB, Jalan Wan Kadir 1, Taman Tun Dr Ismail, 60000 Kuala Lumpur, Malaysia
b Department of Forestry Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, 97000 Bintulu, Sarawak, Malaysia
c Department of Biology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia *Corresponding author: johnkeen@upm.edu.my

Received 31 st July 2021 ; accepted 4nd October 2021
Available online 20th December 2021

ABSTRACT. Paper waste is one of many wastes produced by men leading to more landfill spaces to dispose of them. Improper management of wastes can become a nuisance and can become a source of pollution and environmental degradation. This research aimed to determine the effect of different paper wastes (white paper, newspaper, and brown paper) as bedding materials on the efficiency of vermicomposting and nutrient content of the vermicompost. Vermicompost substrates (cow dung, vegetable waste and waste paper) were digested using earthworms (Eudrilus eugeniae) for up to 68 days and were assessed across physical (temperature and weight loss) and chemical parameters (pH, macro- and micro-nutrients content). The vermicompost gave pH values ranging from 7.9 to 9.9 for different paper beddings. The temperature in all vermicompost piles averaged 26 to 34˚C, while
weight losses were recorded at 26 to 38%. Chemical analyses of all vermicompost substrates showed no significant difference for N, P, Fe, Cu and Mg contents. In contrast, the C:N ratio, K, Na, Ca, Zn and Mn of the vermicompost products were significantly different (P<0.05). Although vermicomposting using newspaper bedding recorded the shortest period to mature with most nutrient contents suitable for application on plants, the Cu content was too high, suggesting that the amount of newspaper used as bedding should be reduced and substituted with other organic substances such as crop residues. Vermicomposting using paper wastes as beddings for earthworm (E. eugeniae) shows a good potential of producing vermicompost that can be used as a soil amendment.

KEYWORDS: paper wastes, beddings, Eudrilus eugeniae, vermicompost, nutrient content

Download Manuscript (Right-Click and Save As)

REFERENCES

  • Adamcová, D., Vaverková, M.D., Bartoň, S., Halivlíček, Z. & Břoušková, E. 2016. Soil contamination in landfills: a case study of a landfill in Czech Republic. Solid Earth, 7(1): 239- 247
  • Altemeier, M., Meyers, R. & Aviles, F. 2004. Size press filling boosts ash content enhances uncoated free-sheet quality. Pulp and Paper, 78: 52-54.
  • Barrena, R., Font, X., Gabarrell, X. & Sanchez, A. 2014. Home composting versus industrial composting: Influence of composting system on compost quality with focus on compost stability. Waste Management, 34(7): 1109-1116.
  • Basheer, M. & Agrawal, O.P. 2013. Management of paper waste by vermicomposting using epigeic earthworm, Eudrilus eugeniae in Gwalior India. International Journal of Current Microbiology and Applied Sciences, 2(4): 42-47.
  • Bernal, M.P., Alburquerque, J.A. & Moral, R. 2008. Composting of animal manures and chemical criteria for compost maturity assessment: A review. Bioresource Technology, 100(2): 5444- 5453.
  • Brady, N.C. & Weil, R.R. 2002. The Nature and Properties of Soils, 13th Edition. Upper Saddle River: Prentice Hall Publisher. Bray, R.H. and L.T. Kurtz, 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59: 39-46.
  • Campos, J.R., Dendooven, L., Bernal, D.A. & Ramos, S.M.C. 2014. Potential of earthworms to accelerate removal of organic contaminants from soil: A review. Applied Soil Ecology, 79: 10- 25.
  • Chen, Z., Yang, L., Liu, T., Jiang, J., Li, B., Cao, Y. & Yu, Y. 2013. Ecological effects of cow manure compost on soils contaminated by landfill leachate. Ecological Indicators, 32: 14-18.
  • Doan, T.T., Bouvier, C., Bettarel, Y., Bouvier, T., Tureaux, T.H., Janeau, J.L., Lamballe, P., Nguyen, B.V. & Jouquet, P. 2014. Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems. Applied Soil Ecology, 73: 78-86.
  • Dominguez, J., Edwards, C.A. & Ashby, J. 2001. The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oligochaeta) in cattle waste solids. Pedobiologia, 45(4): 341-353.
  • Eghball, B. 2002. Soil properties as influenced by phosphorus- and nitrogen-based manure and compost applications. Agronomy Journal, 94(1):1 28–135.
  • Fornes, F., Mendoza-Hernandez, D., Garcia-de-la-Fuente, R., Abad, M. & Belda, R.M. 2012. Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresource Technology, 118: 296-305.
  • Gutiérrez-Miceli, F.A., Santiago-Borraz, J., Molina, J.A.M., Nafate, C.C., Abud-Archila, M., Llaven, M.A.O., Rincón-Rosales, R. & Dendooven, L. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, 98(15): 2781 -2786.
  • Environmental Paper Network. 2018. The State of the Global Paper Industry 2018, available online: https://environmentalpaper.org/wpcontent/uploads/2018/04/StateOfTheGlobalPaperIndustry20 18_ExecSummaryFinal.pdf. [Accessed July 2021].
  • Frederickson, J., Howell, G. & Hobson, A.W. 2007. Effect of pre-composting and vermicomposting on compost characteristics. European Journal of Soil Biology, 43(1): 320-326.
  • Guo, Y.H., Guo, J.J., Miao, H., Teng, L.J. & Huang, Z. 2014. Properties and paper sizing application of waterborne polyurethane emulsions synthesized with isophorone diisocyanate. Progress in Organic Coatings, 77(5): 988-996.
  • Hanc, A. & Chadimova, Z. 2014. Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresource Technology, 168: 240-244.
  • Huang, K. & Xia, H. 2018. Role of earthworm’s mucus in vermicomposting system: Biodegradation tests based on humification and microbial activity. Science of the Total Environment, 610: 703- 708.
  • Jemal, K. & Abebe, A. 2020. Effect of different bedding materials and waste feeds on vermicompost production and local earthworm performance in Wondo Genet Ethiopia. Asian Journal of Plant Science and Research, 10(3): 13-18.
  • Khan, A. & Ishaq, F. 2011. Chemical nutrient analysis of different composts (vermicompost and pitcompost) and their effect on the growth of a vegetative crop Pisum sativum. Asian Journal of Plant Science and Research, 1(1): 116-130.
  • Khwairakpam, M. and Bhargava, R. 2009. Vermitechnology for sewage sludge recycling. Journal of Hazardous Materials, 161(2-3): 948-954.
  • Kumar, S, Tripathi, G & Mishra, G.V. 2021. A comparative study on agrowaste conversion into biofertilizer employing two earthworm species. Applied Ecology and Environmental Sciences9(2): 280-285.
  • Latifah, A.M., Mohd Lokman, C.J., Mohd Kamil, Y., Tengku Hanidza, T.I., Rosta, H. & Hafizan, J. 2009. Influences of bedding material in vermicomposting process. International Journal of Biology, 1(1): 81-91.
  • Lazcano, C., Gómez-Brandón, M. & Domínguez, J. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72: 1013-1019.
  • Liu, F., Zhu, P. & Xue, J. 2012. Comparative study on physical and chemical characteristics of sludge vermicomposted by Eisenia fetida. Procedia Environmental Sciences, 16: 418-423.
  • Manaig, E.M. 2016. Vermicomposting efficiency and quality of vermicompost with different bedding materials and worm food sources as substrate. Research Journal of Agriculture and Forestry Sciences, 4(1): 1-13.
  • Martin-Gil, J., Navas-Gracia, L.M., Gómez-Sobrino, E., Correa-Guimares, A., Hernández-Navarro, S., Sánchez-Báscones, M. & Ramoz-Sánchez, M.D.C. 2007. Composting and vermicomposting experiences in the treatment and bioconversion of asphaltens from the prestige oil spill. Bioresource Technology, 99: 1821-1829.
  • Mehta, C.M., Palni, U., Franke-Whittle, I.H. & Sharma, A.K. 2013. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management, 34(3): 607-622.
  • Munroe, G. 2014. Manual of on-farm vermicomposting and vermiculture, available online: http://www.organicagcentre.ca/DOCs/Vermiculture_FarmersManual_gm.pdf. [Accessed June 2018]. Nagavallemma, K. P., Wani, S. P., Lacroix, S., Padmaja, V.V., Vineela, C. & Sahrawat, K.L. 2005. Vermicomposting: recycling waste into valuable organic fertilizer. Journal of Agriculture and Environment for International Development, 99(3-4): 187-204.
  • Nathan, M.V. & Sun, Y. 2006. Methods for plant analysis: A guide for conducting plant analysis in Missouri, available online: http://soilplantlab.missouri.edu/soil/plant/ analysis.rtf. [Accessed July 2018].
  • Nattudurai, G., Ezhil Vendan, S., Ramachandran, P.V. & Lingathurai, S. 2014. Vermicomposting of coirpith with cowdung by Eudrilus eugeniae Kinberg and its efficacy on the growth of Cyamopsis tetragonaloba (L) Taub. Journal of Saudi Society of Agricultural Sciences, 13(1): 23-27.
  • Ndegwa, P.M. & Thompson, S.A. 2001. Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresource Technology, 76(2): 107-112.
  • Ochoa de Alda, J.A.G. 2008. Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resources, Conservation and Recycling, 52: 965-972.
  • Okada, K., Yamamoto, N., Kameshima, Y. & Yasumori, A. 2003. Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation. Journal of Colloid and Interface Science, 262: 179-193.
  • Padmavathiamma, P.K., Li, L.Y. & Kumari, U.R. 2008. An experimental study of vermin-biowaste composting for agricultural soil improvement. Bioresource Technology, 99(6): 1672-1681.
  • Piya, S. Shrestha, I, Gouchan, D.P. & Lamichhane, J. 2018. Vermicomposting in organic agriculture: influence on the soil nutrients and plant growth. International Journal of Research, 5(20): 1055-1063.
  • Reinecke, A.J., Viljoen, S.A. & Saayman, R.J. 1992. The suitability of Eudrilus eugeniae, Perionyx excavatus and Eisenia fetida (Oligochaeta) for vermicomposting in Southern Africa in terms of their temperature requirements. Soil Biology and Biochemistry, 24(12): 1295- 1307.
  • Rini, J., Deepthi, M.P., Saminathan, K. Narendhirakannan, R.T, Karmegam, N. & Kathireswari P. 2020. Nutrient recovery and vermicompost production from livestock solid wastes with epigeic earthworms. Bioresource Technology, 313: 123690.
  • Roshan Singh, W. & Kalamdhad, A.S. 2016. Transformation of nutrients and heavy metals during vermicomposting of the invasive green weed Salvinia natans using Eisenia fetidaInternational Journal of Recycling of Organic Waste in Agriculture, 5(3): 205-220.
  • Rumpel, C., Ngo, P.T., Doan, T.T. & Jouquet, P. 2013. The effect of earthworms on carbon storage and soil organic matter composition in tropical soil amended with compost and vermicompost. Soil Biology and Biochemistry, 50: 214-230. Sathe, T.V. 2004. Vermiculture and Organic Farming. New Delhi: Daya Publishing House.Schumacher, B.A. 2002. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments. Ecological Risk Assessment Support Center, Office of Research and Development, U.S. Environmental Protection Agency.
  • Sehar, T., Sheikh, G.G., Zargar, M.Y. & Baba, Z.A. 2016. Identification and screening of earthworm species from various temperate areas in Kashmir Valley for vermicomposting. Advances in Recycling & Waste Management. 1: 102.
  • Serrano, A., Espinach, F.X., Tresserras, J., Rey, R.D., Pellicer, N. & Mutje, P. 2014. Macro and micromechanics analysis of short fiber composites stiffness: The case of old newspaper fiberspolypropylene composites. Materials and Design, 55: 319-324.
  • Singh, R.P., Singh, P., Araujo, A.S.F., Ibrahim, M.H. & Sulaiman, O. 2011. Management of urban solid waste: Vermicomposting a sustainable option. Resource, Conservation and Recycling55(7): 719-729.
  • Sutcu, M. & Akkurt, S. 2009. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceramics International, 35(7): 2625-2631.
  • Tejada, M., Garcia-Martinez, A.M. & Parrado, J. 2009. Effects of a vermicompost composted with beet vinasse on soil properties, soil losses and soil restoration. Catena, 77(3): 238-247.
  • Twana, T.A. & Fauziah, S.H. 2012. Vermicomposting of two types of coconut wastes employing Eudrilus eugeniae: A comparative study. International Journal of Recycling of Organic Waste in Agriculture, 1(7): 1 -6.
  • Wang, H-Q., Zhao, Q., Zeng, D-H., Hu, Y-L., & Yu, Z-Y. 2015. Remediation of a magnesiumcontaminated soil by chemical amendments and leaching. Land Degradation & Development26(6): 613-619.
  • Wani, K.A., Mamta, K. & Rao, R.J. 2013. Bioconversion of garden waste, kitchen waste and cow dung into value added products by using earthworm Eisenia fetida. Saudi Journal of Biological
    Sciences, 20(2): 149-154.
  • Ward, P.L., Wohlt, J.E., Zajac, P.K. & Cooper, K.R. 2014. Chemical and physical properties of processed newspaper compared to wheat straw and wood shavings as animal bedding. Journal of Dairy Science, 83(2): 359-367.
  • Waste Management World. 2013. Paper Recycling: Nurturing Success, available online: https://waste-management-world.com/a/paper-recycling-nurturing-success [Accessed on February 2018].
  • Yang, J., Lv, B., Zhang, J. & Xing, M. 2014. Insight into the roles of earthworm in vermicomposting of sewage sludge by determining the water-extracts through chemical and spectroscopic methods. Bioresource Technology, 154: 94-100.
  • Zucco, M.A., Alan Walters. S., Ahe-Kong, C. & Klubek, B.P. 2015. Effect of soil type and vermicompost applications on tomato growth. International Journal of Recycling of Organic Waste in Agriculture, 4: 135-141.

Volume 42 (Issue 1), March 2021

AN IMAGE ENHANCEMENT METHOD BASED ON A S-SHARP FUNCTION AND PIXEL NEIGHBORHOOD INFORMATION
– Libao Yang, Suzelawati Zenian*, Rozaimi Zakaria

DYNAMIC SIMULATION ON THE RECOVERY OF 2-ACETYL PYRROLINE (2-AP) IN A PACKED BED COLUMN USING RICE HUSK CHAR AS SOLID ADSORBENT
– Carla Goncalves De Olievera Sarmento1 , Mohd Hardyianto Vai Bahrun1,**, Jidon Janaun1 , Awang Bono2,*, Duduku Krishnaiah3

EFFECTS OF CRITICAL MICELLE CONCENTRATION OF ANIONIC SURFACTANTS AND THEIR TOXICITY TO AQUATIC ORGANISMS
– Siti Afida, I*; Noorazah, Z and Razmah, G

ASCORBIC ACID DETERMINATION IN FRESH AND COMMERCIAL FRUIT JUICES BY DIFFERENTIAL STRIPPING VOLTAMMETRIC TECHNIQUE AT A GLASSY CARBON ELECTRODE
– Nur Syamimi Zainudin* and Zaihasra Azis

THE QUALITY ASSESSMENT OF HEAVY METALS IN MARINE SEDIMENTS FROM USUKAN COASTAL BEACH, KOTA BELUD, SABAH.
– Ling Sin Yi1 , Junaidi Asis1 & Baba Musta1*

Download Full Volume HERE

DYNAMIC SIMULATION ON THE RECOVERY OF 2-ACETYL PYRROLINE (2-AP) IN A PACKED BED COLUMN USING RICE HUSK CHAR AS SOLID ADSORBENT

Carla Goncalves De Olievera Sarmento1 , Mohd Hardyianto Vai Bahrun1,**, Jidon Janaun1 ,

Awang Bono2,*, Duduku Krishnaiah3

1Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS,

88400 Kota Kinabalu, Sabah, Malaysia

2GRISM Innovative Solutions, Kota Kinabalu, Sabah, Malaysia

3Department of Chemical Engineering, Anurag University, Hyderabad, Telangana 500088, India

*Corresponding author. E-mail: awangbono@gmail.com

**Corresponding author. E-mail: hardyvai14@gmail.com

ABSTRACT. Fragrant rice is known to contain the aromatic compound of 2-Acetyl Pyrroline (2-AP). This compound has been known as a major compound that gives fragrant characteristics in rice. However, this compound is volatile and easily escapes from the rice upon the drying process. In order to recover the release of 2-AP from rice upon drying, a packed bed adsorption system is employed using treated agricultural waste as a solid adsorbent. The experimental adsorption study in a batch mode for 2-AP onto treated rice husk char (TRHC) was used as a case study for this present work. Influences of three operational parameters towards the dynamic adsorption of 2-AP onto TRHC in a packed bed column were investigated by measuring the breakthrough and saturation time and mass transfer zone. This study suggests the possibility of treated agricultural waste as an alternative to capture the lost 2-AP during the paddy drying process.

KEYWORDS. Adsorption; Aromatic rice; Breakthrough curve; Treated rice husk; Simulation

 

REFERENCES

  • Ahmed, S., Unar, I. N., Khan, H. A., Maitlo, G., Mahar, R. B., Jatoi, A. S., Memon, A. Q., & Shah, A. 1.(2020). Experimental study and dynamic simulation of melanoidin adsorption from distillery effluent. Environmental Science and Pollution Research, 27(9), 9619–9636.
  • AspenONE. (2009). AspenONE v7.3 Reference Guide. AspenTech Inc.
  • Bahrun, M. H. V., Kamin, Z., Anisuzzaman, S. M., & Bono, A. (2021). Assessment of Adsorbent for Removing Lead (Pb) Ion in an Industrial-Scaled Packed Bed Column. Journal of Engineering Science and Technology, 16(2), 1213–1231.
  • Baradi, M. A. U., & Elepano, A. R. (2012). Aroma Loss in Rice as Affected by Various Conditions during Postharvest Operations. Philippine Agricultural Scientist, 95(3), 260–266.
  • Bono, A. (1989). Sorptive Separation of Simple Water Soluble Organics (Doctoral dissertations, University of Surrey, Guildford, United Kingdom). Retrieved from https://openresearch.surrey.ac.uk/esploro/outputs/doctoral/Sorptive-Separation-of-Simple Water-Soluble-Organics/99511759402346#files_and_links
  • Coker, A. K. (2007). Ludwig’s Applied Process Design for Chemical and Petrochemical Plants (4th ed.). Gulf Professional Publishing. da Rosa, C. A., Ostroski, I. C., Gimenes Meneguin, J.,
  • Gimenes, M. L., & Barros, M. A. S. D. (2015). Study of Pb2+ adsorption in a packed bed column of bentonite using CFD. Applied Clay Science, 104, 48–58.
  • Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). A new method for prediction of binary gas phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27. https://doi.org/10.1021/ie50677a007
  • Glueckauf, E. (1955). Theory of chromatography. Part 10: Formulae for diffusion into spheres and their application to chromatography. Transactions of the Faraday Society, 51, 1540–1551.
  • Green, D. W., & Perry, R. H. (2008). Perry’s Chemical Engineers’ Handbook (8th ed). The McGraw Hill Companies, Inc.
  • Hanafy, H., Sellaoui, L., Thue, P. S., Lima, E. C., Dotto, G. L., Alharbi, T., Belmabrouk, H., Bonilla -
  • Petriciolet, A., & Lamine, A. Ben. (2019). Statistical physics modeling and interpretation of the adsorption of dye remazol black B on natural and carbonized biomasses. Journal of Molecular Liquids, 299, 112099.
  • Hien, N. L., Yoshihashi, T., Sarhadi, W. A., & Hirata, Y. (2006). Sensory Test for Aroma and Quantitative Analysis of 2-Acetyl-1-Pyrroline in Asian Aromatic Rice Varieties. Plant Production Science, 9(3), 294–297. https://doi.org/10.1626/pps.9.294
  • Hymavathi, D., & Prabhakar, G. (2019). Modeling of cobalt and lead adsorption by Ficus benghalenesis L. in a fixed bed column. Chemical Engineering Communications, 206(10), 1264–1272.
  • Jangde, V., Umathe, P., Antony, P. S., Shinde, V., & Pakade, Y. (2019). Fixed-bed column dynamics of xanthate-modified apple pomace for removal of Pb(II). International Journal of Environmental Science and Technology, 16(10), 6347–6356.
  • Kongkiattikajorn, J. (2008). Effect of Storage Time and Temperature on Volatile Aroma Compounds and Physicochemical Properties of Rice. Kasetsart Journal – Natural Science, 42, 111–117.
  • Nadaf, A. B., Krishnan, S., & Wakte, K. V. (2006). Histochemical and biochemical analysis of major aroma compound (2-acetyl-1-pyrroline) in basmati and other scented rice (Oryza sativa L.). Current Science, 91(11), 1533–1536.
  • Sarmento, C. G. D. O. (2021). Adsorption of 2-Acetyl-1-Pyrroline (2-AP) by Using Rice Husk Chars (Unpublished master’s thesis). Universiti Malaysia Sabah, Sabah, Malaysia.
  • Suzuki, M., & Kawazoe, K. (1975). Effective Surface Diffusion Coefficients of Volatile Organics on Activated Carbon during Adsorption from Aqueous Solution. Journal of Chemical Engineering of Japan, 8(5), 379–382. https://doi.org/10.1252/jcej.8.379
  • Tan, W.-H., Bahrun, M. H. V., Surugau, N., & Bono, A. (2020). Evaluation of Adsorption Dynamic Retention of Copper Ion in Porous Agricultural Soil. Transactions on Science and Technology, 7(3), 90–100.
  • Yoshihashi, T., Huong, N. T. T., Surojanametakul, V., Tungtrakul, P., & Varanyanond, W. (2005). Effect of Storage Conditions on 2-Acetyl-1-pyrroline Content in Aromatic Rice Variety, Khao Dawk Mali 105. Journal of Food Science, 70(1). https://doi.org/10.1111/j.1365- 2621.2005.tb09061.x

Download Full Paper Here (Right-Click and Save As)

EFFECTS OF CRITICAL MICELLE CONCENTRATION OF ANIONIC SURFACTANTS AND THEIR TOXICITY TO AQUATIC ORGANISMS

Siti Afida, I*; Noorazah, Z and Razmah, G

1Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board,

6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

*Correspomdimg author. Email: siti.afida@mpob.gov.my

 

ABSTRACT. The critical micelle concentration (CMC) is the concentration of surfactants above which micelles are formed. The effects of CMC of methyl ester sulfonates (MES) on ecotoxicological behaviour of freshwater organisms in predicting the risk levels contributed from the surfactant used were determined. The surface tension of palm-based MES with various carbon chain lengths (C12, C14 and C16) was measured to determine the CMC. Ecotoxicity tests were conducted on three different aquatic organisms: green algae (Raphidocelis subcapitata), freshwater crustacean (Daphnia magna) and freshwater fish (Tilapia nilotica). The effective concentration of MES that caused 50% fish mortality (LC50), crustacean immobilization (EC50) and algae inhibition (EC50) was determined. Through surface tension analyses, the CMC obtained for MES C12, C14 and C16 was 1000 mg/L, 900 mg/L and 12 mg/L, respectively. The LC50 of MES C12, C14 and C16 were 391 mg/L, 22.6 mg/L and 12.6 mg/L, respectively, in fish. The crustacean EC50 of MES C12, C14 and C16 were >100 mg/L, 77.6 mg/L, and 1.15 mg/L. Meanwhile, algae EC50 of MES C12, C14 and C16 was 541 mg/L, 399 mg/L and >10 mg/L, respectively. Relative comparison showed that D. magna was observed to be more sensitive compared to R. subcapitata and T. nilotica towards MES of the same chain length. A linear relationship was observed between CMC and ecotoxicity values. The lower the CMC value, the lower is the LC50 or EC50 value and the surfactant becomes more toxic. It is suggested that the CMC value can be used as a toxicity indicator for anionic surfactant by considering that the EC50 value of a surfactant will be reached before its CMC value.

KEYWORDS: CMC, Ecotoxicity, Aquatic organisms, Environment

REFERENCES

  • Becher, P., (1984). Hydrophile−lipophile balance: history and recent developments (Langmuir lecture, 1983). J. Dispersion Sci. Technol 5: 81–96.
  • Calamari, D.; Marchetti, R., (1973). The toxicity of mixture of metals and surfactants to rainbow trout (Salmo gairdneri rich.). Water Research, 7: 1453-1464.
  • Fendinger, N. J., (1994) Environmental behaviour and fate of anionic surfactants. Environmental Chemistry of Lakes and Reservoirs (Baker, L A ed.). American Chemical Society, Washington, p. 528-557.
  • Fernández-Serrano, M.; Jurado, E.; Fernández-Arteaga, A.; Ríos, F.; Lechuga, M., (2014). Ecotoxicological assessment of mixtures of ether carboxylic derivative and amine-oxide-based non-ionic surfactants on the aquatic environment. Journal of Surfactants and Detergents, 17: 1161-1168.
  • Garcia, M. T.; Ribosa, I.; Guindulain, T.; Sanchez-Leal, J.; Vives-Rego, J., (2001). Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment. Environ. Pollut, 111: 169-75.
  • GESAMP, (2014). Revised GESAMP Hazard Evaluation Procedure for Chemical Substances Carried by Ships, International Maritime Organization.
  • Hisano, N.; Oya, M., (2010). Effects of surface activity on aquatic toxicity of binary surface mixtures. Journal of oleo science, 59: 589-599.
  • Inácio, Â. S.; Mesquita, K. A.; Baptista, M.; Ramalho-Santos, J.; Vaz, W. L.; Vieira, O. V., (2011). In vitro surfactant structure-toxicity relationships: Implications for surfactant use in sexually transmitted infection prophylaxis and contraception. PLoS One, 6:19850.
  • Ivanković, T.; Hrenović, J., (2010). Surfactants in the environment. Archives of Industrial Hygiene and Toxicology, 61: 95-110.
  • Jurado, E.; Fernández-Serrano, M.; Lechuga, M.; Ríos, F., (2012a). Environmental impact of ether carboxylic derivative surfactants. Journal of Surfactants and Detergents, 15: 1-7.
  • Jurado, E.; Fernández-Serrano, M.; Olea, J. N.; Lechuga, M.; Jiménez, J.; Ríos, F., (2012b). Acute toxicity of alkylpolyglucosides to Vibrio fischeri, Daphnia magna and microalgae: a comparative study. Bulletin of environmental contamination and toxicology, 88: 290-295.
  • Market Research Store (2015b). Global Fatty Methyl Ester Sulfonates (FMES) Market is expected to Reach USD 1.58 Billion in 2020 [Online]. Available: http://www.marketresearchstore.com/news/global-fatty-methyl-ester-sulfonates-fmes-market is-45 [Accessed 15/8/2015 Market Research Store, (2015a). Global Fatty Methyl Ester Sulfonates (FMES) Market for Household Detergents, Personal Care Products and Other Applications, 2014 – 2020.
  • Pavlić, Ž.; Vidaković-Cifrek, Ž.; Puntarić, D., (2005). Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere, 61: 1061-1068.8
  • Potokor, M. S., (1992). Acute, subacute and chronic toxicity data on anionics. Anionic Surfactants, Biochemistry, Dermatology (Gloxhuber, C and Kunstler, K eds.). 2nd ed., Surfactant Science Series, 43: 81-116.
  • Razmah, G.; Siti Afida, I.; Noorazah, Z.; Hazimah, A. H.; (2016). Acute ecotoxicity (48-hr EC50) assessment of palm-based methyl ester sulphonates (MES) towards Daphnia magna. Journal of Oil Palm Research, 28: 74-80.
  • Razmah, G.; Siti Afida, I.; Zulina, A.M.; Noorazah, Z.; Hazimah, A.H., (2015). A comparative study of the ecotoxicity of palm-based methyl ester sulphonates (MES) to Tilapia and Daphnia magna. Journal of Oil Palm Research, 28: 387-392.
  • Ríos, F.; Lechuga, M.; Fernández-Serrano, M.; Fernández-Arteaga, A., (2017). Aerobic biodegradation of amphoteric amine-oxide-based surfactants: Effect of molecular structure, initial surfactant concentration and pH. Chemosphere, 171: 324-331.
  • Sanchez Leal, J.; González, J. J.; Comelles, F.; Campos, E.; Ciganda, T., (1991). Biodegradability and Toxicity of anionic surfactant. Acta hydrochim hydrobiol, 19: 703-709.
  • Siti Afida, I.; Razmah, G.; Zulina, A.M.; Noorazah, Z., (2017). Ecotoxicology Study of Various Homologues of Methyl Ester Sulfonates (MES) Derived from Palm Oil. Journal of Surfactants and Detergents, 20: 1467–1473.
  • Toshiharu, T.; Horoshi, O.; Kazuaki, M.; Yutaka, T., (2006). Ecotoxicity of Tetradecanoic Acid, 2-sulfo-, 1-methylester, Sodium Salt (C14MES). Journal of Oleo Science, 55: 121- 126.

Download Full Paper Here (Right-Click and Save As)

ASCORBIC ACID DETERMINATION IN FRESH AND COMMERCIAL FRUIT JUICES BY DIFFERENTIAL STRIPPING VOLTAMMETRIC TECHNIQUE AT A GLASSY CARBON ELECTRODE

Nur Syamimi Zainudin* and Zaihasra Azis

1Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, Jengka Campus,

26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

* Corresponding author. Email: nursyamimizainudin@uitm.edu.my

ABSTRACT. Ascorbic acid, also known as Vitamin C cannot be synthesized by humans. Ascorbic acid is commonly found in a variety of vegetables and fruits such as mangoes, oranges, broccolis and lettuce. Hence, vegetables and fruits become the main sources of ascorbic acid to meet dietary intake. The differential pulse anodic stripping voltammetry (DPASV) technique using glassy carbon electrode (GCE) as a working electrode and phosphate buffer at pH 4.2 as a supporting electrolyte has been proposed for ascorbic acid determination in natural and commercial fruit juices. The optimum instrumental conditions for electroanalytical determination of ascorbic acid by the proposed DPASV technique were initial potential (Ei) = 0 V, end potential (Ef)= 0.8 V, accumulation time (tacc) = 60 s, scan rate (v) = 0.125 V/s and pulse amplitude = 0.150 V. The anodic peak appeared at 0.3598 V. The curve was linear from 0.028 to 1.703 mM (R2=0.9999) with a detection limit of 0.0114 mM. The precisions in terms of relative standard deviation (RSD) were 1.30%, 0.50% and 0.06%, respectively. The ruggedness of the proposed DPASV technique was tested with statistical F-test. Satisfactory recoveries ranging from 73.65±1.70% to 101.93±1.65% were obtained for three different known concentrations of AA in the fruit juice samples. It can be concluded that the proposed technique is precise, accurate, rugged, low cost, fast and has the potential to be an alternative method for routine analysis of ascorbic acid in natural and commercial fruit juices.

KEYWORDS: Ascorbic Acid, Commercial Fruit Juice, Glassy Carbon Electrode, Voltammetry

 

REFERENCES

  • Aabraha, T. & Sargawie, A. (2014). Assessment of some selected Beverages and Fresh Edible Vegetables as Nutritional Source of Vitamin C (Ascorbic Acid) by Cyclic and Square Wave Voltammetry. International Journal of Science and Engineering Investigation 26(3): 39-49.
  • Bergamini, M.F., Santos, D.P. & Zanoni, M.V.B. (2010). Determination of Major and Minor Elements in through ICP-AES. Environmental Engineering and Management Journal 7(6): 805-808.
  • De Lima, F., Gozzi, F., Fiorucci, A.R., Cardoso, C.A.L., Arruda, G.J. & Ferreira, V.S. (2011). Determination of linuron in water and vegetable samples using stripping voltammetry with carbon paste electrode. Talanta 83:1763-1768.
  • Dioha, I.J., Olugbemi, O., Onuegbu, T. & Shahru, Z. (2011). Determination of some tropical fruits by iodometric titration. International Journal of Biological and Chemical Sciences 5(5): 2180-
  • Farahi, A., Lahrich, S., Achak, M., El Gaini, L., Bakasse, M. & El Mhammedi, M. A. (2014). Parameters affecting the determination of paraquat at silver rotating electrodes using differential pulse voltammetry. Analytical Chemistry Research 1: 16-21.
  • Gazdik, Z., Zitka, O., Petrlova, J., Adam, V., Zehnalek, J., Horna, A., Reznicek, V., Beklova, M. & Kizek, R. (2008). Determination of Vitamin C (Ascorbic Acid) Using High Performance Liquid Chromatography Coupled with Electrochemical Detection. Sensors 8: 7097–7112.
  • Geremedhin, W., Amare, M. & Admassie, S. (2013). Electrochemically pretreated glassy carbon electrode for electrochemical detection of fenitrothion in tap water and human urine. Electrochimica Acta 87: 749 – 755.
  • Jain, R. & Rather, J.A. (2011). Stripping voltammetry of tinidazole in solubilized system and biological fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 378: 27-
  • Jain, R. & Sharma, S. (2012). Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems. Journal of Pharmaceutical Analysis 2(1): 56-61.
  • Klimczak, I. & Gliszczy´nska-Swigło, A. (2015). Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chemistry 175: 100–105.
  • Liamas, N.E., Nezio, M.S. & Band, B.S.F. (2011). Flow-injection spectrophotometric method with on line photodegradation for determination of ascorbic acid and total sugars in fruit juices. Journal of Food Composition and Analysis 24: 127-130.
  • Okiei, W., Ogunlesi, M., Azeez, L., Obakachi, V., Osunsansi, M. & Nkenchar, G. (2009). The Voltametric and Titrimetric Determination of Ascorbic Acid Levels in Tropical Fruit Samples. International Journal of Electrochemical Science 4: 276-287.
  • Miranda, M. P., del Rio, R., del Valle, M. A., Faundez, M. & Armijo, F. (2012). Use of fluorine-doped tin oxide electrodes for lipoic acid determination in dietary supplements. Journal of Electroanalytical Chemistry 668: 1 – 6.
  • Morris, J.R., Bates, R.P. & Philip, G.G. (2001). Principles and Practices of small and medium scale fruit juice processing. United State.
  • Ngai, K.S, Tan, W.T, Zulkarnain, Z., Ruzniza, M.Z. & Mohammed, Z. (2013). Voltammetry Detection of Ascorbic Acid at Glassy Carbon Electrode Modified by Single-Walled Carbon Nanotube/Zinc Oxide. International Journal of Electrochemical Science 8: 10557-10567.
  • Nur Syamimi, Z., Norbaitina, S. & Megat, A.K.M.H. (2020). Validation and Determination of Ascorbic Acid in Multivitamin Tablets by Differential Pulse Anodic Stripping Voltammetric Technique at a Bare Glassy Carbon Electrode. Malaysian Journal of Analytical Science 24 (6): 838-847.
  • Nur Syamimi, Z., Mohamad Hadzri, Y. & Noor Zuhartini, M.M. (2016). Voltammetric determination of Reactive Black 5 in waste water samples from the batik industry. Malaysian Journal of Analytical Science 20: 1254-1268.
  • Nweze, C.C., Abdulganitu, M.G & Erhabor, O.G. (2015). Comperative analysis of vitamin C in fresh fruit juices of Malusdomestica, Citrus Sinensi, AnanasComosus and CitrullusLanatus by Iodometric titration. International Journal of Science 4(1): 17-22.
  • Ogunlesi, M., Okiei, W., Azeez, L., Obakachi, V., Osunsanmi, M. & Nkenchar, G. (2010). Vitamin C Contents of Tropical Vegetables and Food Determined by Voltammetric and Titrimetric Methods and Their Relevance to the Medical Uses of the Pants. International Journal of Electrochemical Sciences 5: 105-115.
  • Packer, L., and Fuchs, J. Vitamin C in health and disease. Marcel Dekker, Inc. New York, Basel, Hong Kong 1997.
  • Pisoschi, A.M., Pop, A., Negulescu, G.P. & Pisoschi, A. (2011). Determination of Ascorbic Acid Content of Some Fruit Juices and Wine by Voltammetry Performed at Pt and Carbon Paste Electrodes. Molecules 16: 1349-1365.
  • Radi A.E., Nassef, H.M. & El Basiony, A. (2011). Electrochemical behaviour and analytical determination of Reactive Red 231 on glassy carbon electrode. Dyes and Pigments 99: 924-
  • Raghu, V., Platel, K. & Srinivason, K. (2007). Comparison of Ascorbic Acid Content of Some Fruit Juices and Wine by Voltammetry Performed at Pt and Carbon Paste Electrodes. Molecules 16:1349-1365.
  • Sadia, G., Azizuddin., Rafi, A., Kousar, Y., Fareed, A. & Iftekhar, S. (2014). Determination of Ascorbic Acid Content of Some Capsicum Cultivars by Cyclic Voltammetry performed at GCE by External Standard Series Calibration Method. International Journal of Electrochemical Science 9: 5751-5762.
  • Sezgin, H., V., Dilgin, Y. & Gokcel, H., I. (2016). Adsorption and deposition-assisted anodic stripping voltammetry for determination of antimony (III) in presence of hematoxylin on glassy carbon electrode. Talanta 164: 677-683.
  • Sona, S., Jiri, M., Jiri, S., Mojmir, B., Jindrich, K. & Tunde, J. (2015). Determination of Ascorbic Acid by Electrochemical Techniques and other Methods. International Journal of Electrochemical Science 10: 2421-2431.
  • Skrovanko, S., Micek, J., Sochar, J., Baron, M, M Kynicky, J. & Jurikova, T. (2015). Determination of ascorbic acid by Electrochemical Technique and other methods. International Journal of Electrochemical Sciences 10: 2421-2431.
  • Tareen, H., Mengal, F., Masood, Z., Mengal, R., Ahmed, S., Bibi, S., Shoaib, S., Sami, U., Mandokhail, F., Riaz, M., Farhan, N & Nawaz, Z. (2015). Determination of vitamin c content in Citrus Fruits and in Non-Citrus Fruits by Titrimetric Method with Special Reference to their nutritional importance in human diet. Biological Forum-An International Journal 7(2): 367-
  • Tyagi, G., Jangir, D.K., Singh, R., Mehrotra, R., Ganaseran, R. & Gopal, E.S.R. (2014). Rapid determination of main constituents of packed juices by reverse phase-high performance liquid chromatography: an insight in to commercial fruit drinks. Journal of Food Science and Technology 51(3): 476–484.
  • Valente, A., Albuquerque, T.G., Ana, S.S. & Costa, H.S. (2011). Ascorbic acid content in exotic fruits. A contribution to produce quality data for food composition database. Food Research International 44: 2237-2242.
  • Yilmaz, S., Sadikoglu, M., Saglikoglu, G., Yagmur, S. & Askin, G. (2008). Determination of Ascorbic Acid in Tablet Dosage Forms and Some Fruit Juices by DPV. International Journal of Electrochemical Science 3: 1534-1542.
  • Zhang, Y., Zhou, W., Yan, J., Liu, M., Zhou, Y., Shen, X., Ma, Y., Feng, X., Yang, J. & Li, G. (2018). A review of the extraction and determination methods of thirteen essential vitamins to the human body: An update from 2010. Molecules 23: 1-25.

Download Full Paper Here (Right-Click and Save As)

THE QUALITY ASSESSMENT OF HEAVY METALS IN MARINE SEDIMENTS FROM USUKAN COASTAL BEACH, KOTA BELUD, SABAH.

Ling Sin Yi1 , Junaidi Asis1 & Baba Musta1*

1Geology Program, Faculty of Science and Natural Resources,

Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

* Corresponding author. Email: babamus@ums.edu.my

ABSTRACT. A total of fifty-three (53) sediment samples were collected from Usukan coastal beach to study the potential of pollution due to heavy metals in the marine ecosystem. The sediment samples were collected along the coastal beach using a core sampler. The ICP-OES analysis was used to identify the concentration of heavy metals in the marine sediment samples. The results of pH analysis showed the increase of pH from 5.69 to 8.48 from inland into the sea. The lowest moisture content was 4.99%, whereas the highest was 48.75%. The organic matter ranges from 0.30 to 6.73%. The sediment texture varies from sandy, sandy loam, and sandy clay loam texture. The decreasing rank ing order of heavy metals concentration is Fe (4476-29829 ppm) followed by Al (5803-8524 ppm) and Mn (103-504 ppm), which are still within the background values and standard limits. The assessment of Fe, Al and Mn contamination in sediment samples was performed by comparing with the allowable range of average background values and the standard limits from Sediment Quality Guideline (SQG) in marine sediment. In conclusion, the results of quality assessment using the geoaccumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), and pollution load index (PLI) showed that the sediment from Usukan beach has a very low contamination level that causes only mild pollution.

KEYWORDS. Geochemistry, Heavy Metal, Sediment Quality, Marine Environment

 

REFERENCE

  • Abolfazl, N. & Ahmad, I. 2012. Sediment quality assessment of Klang Estuary, Malaysia. Aquatic Ecosystem Health & Management: 15(3): 287-293.
  • Ahmed, A. & Askri, B. 2016. Seawater Intrusion Impacts on the Water Quality of the Groundwater on the Northwest Coast of Oman. Water Environment Research: 88: 732-740.
  • Allaway, W.H. 1957. pH, soil acidity and plant growth. Soil: 67-71.
  • Amir, M., Iqbal, M., Zainal, S. & Manap, A. 2020. Static Adsorption of Amphoteric Surfactant. Offshore Technology Conference.
  • Atherton, R.J., Baird, A.J. & Wiggs, G.F.S. 2001. Intertidal dynamics of surface moisture content on a meso-tidal beach. J. Coastal Res.: 17: 482–489.
  • Ball, J. 2001. Soil and Water Relationships. Noble Research Institute, 1 Sep 2001, Retrieved: https://www.noble.org/news/publications/ag-news-and-views/2001/september/soil-and-waterrelationSSships/.
  • Bauer, A., Radziejewska, T., Liang, K., Kowalski, N., … & Waniek, J.J. 2013. Regional differences of hydrographical and sedimentological properties in the Beibu Gulf, South China Sea. Journal of Coastal Research: 66 (10066): 49-71.
  • Birch, G. 2018. A review of chemical-based sediment quality assessment methodologies for the marine environment. Marine pollution bulletin: 133: 218-232.
  • Boyle, E.A. 1983. Manganese carbonate overgrowths on foraminifera tests. Geochimica et Cosmochimica Acta: 47(10). The Quality Assessment of Heavy Metals in Marine Sediments from Usukan Coastal Beach, Kota Belud, Sabah
  • BSI. 1990. BS1377: 1990 British Standard Methods of Tests for Soils for Civil Engineering Purposes. London: British Standard Institution (BSI).
  • Canfield, D. 1989. Reactive iron in marine sediments. Geochimica et cosmochimica acta.: 53: 619-32.
  • Chen, S., Takematsu, N., Ambe, S., Ament, A. & Ambe, F. 1994. A Mössbauer spectroscopy study on iron in marine sediments. Hyperfine Interactions: 91: 759-763.
  • Chuan, O.M. & Yunus, K. 2019. Sediment and organisms as marker for metal pollution. In Monitoring of Marine Pollution. IntechOpen: 1-19.
  • Clement, J.F. & Keij, J. 1958. Geology of the Kudat Peninsula, North Borneo (Compilation) GR783.
  • Unpublished Reports of the Royal Dutch Shell Group of Companies in British Borneo.
  • Csuros, M. & Csuros, C. 2002. Environmental Sampling and Analysis for Metals. Boca Raton, USA: Lewis Publishers.
  • Collenette, P. 1957. Notes on the geology of the headwaters of the Labuk, Sugut and Karamuak Rivers. Brit. Borneo Geol. Suv. Ann. Rep.:153-162.
  • Dezileau, L. & Pizarro, C. & Rubio, M. 2007. Sequential extraction of iron in marine sediments from the Chilean continental margin. Marine Geology – MAR GEOLOGY: 241: 111-116.
  • Ding, Z., Koriem, M.A., Ibrahim, S.M., Antar, A.S., Ewis, M.A., He, Z. & Kheir, A. M. 2020. Seawater intrusion impacts on groundwater and soil quality in the northern part of the Nile Delta, Egypt. Environmental Earth Sciences: 79(13): 1-11.
  • Djkstra, F. & Fitzhugh, R. 2003. Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the North Eastern United States. Geoderma: 114: 33-
  • Durães, N., Novo, L.A., Candeias, C. & Da Silva, E.F. 2018. Distribution, transport and fate of pollutants. In Soil pollution. Academic Press: 29-57.
  • Force, E.R. & Cox, L.J. 1991. Manganese contents of some sedimentary rocks of Paleozoic age in Virginia. US Government Printing Office.
  • Förstner, U. 2006. Contaminated sediments: lectures on environmental aspects of particle-associated chemicals in aquatic systems. Chicago: The University of Chicago Press Vol. 21.
  • Gopal, V., Achyuthan, H. & Jayaprakash, M. 2017. Assessment of trace elements in Yercaud Lake sediments, southern India. Environ Earth Sci.: 76: 63.
  • Govind, A.V., Behera, K., Dash, J.K., Balakrishnan, S., Bhutani, R., Managave, S. & Srinivasan, R. Trace element and isotope Geochemistry of Neoarchean carbonate rocks from the Dharwar craton, southern India: Implications for depositional environments and mantle influence on ocean chemistry. Precambrian Research: 357.
  • Grecco, L., Gómez, E., Botté, S., Marcos, Á., Marcovecchio, J. & Cuadrado, D. 2011. Natural and anthropogenic heavy metals in estuarine cohesive sediments: Geochemistry and bioavailability. Ocean Dynamics – OCEAN DYN: 61: 285-293.
  • Gui, Y., Zhang, Q., Qin, X. & Wang, J. 2021. Influence of Organic Matter Content on Engineering Properties of Clays. Advances in Civil Engineering 2021: 1-11.
  • Gwak, Y.S. & Kim, S.H. 2016. Factors Affecting Soil Moisture Spatial Variability for a Humid Forest Hillslope. Hydrological Processes.
  • Hakanson, L. 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water. Res.: 14: 975–1001.
  • Hall, R. & Breitfeld, H.T. 2017. Nature and Demise of the Proto-South China Sea. Bulletin of the Geological Society of Malaysia: 63.
  • Han, F.X., Kingery, W.L. & Selim, H.M. 2001. Accumulation, redistribution, transport, and bioavailability of heavy metals in waste-amended soils. CRC Press: In Trace Elements in Soil: 161-190.
  • Hart, B.T. 1982. Uptake of trace metals by sediments and suspended particulates: A review. Hydrobiol.: 91: 299–313.
  • Jayamurali, D., Varier, K., Liu, W., Jegadeesh, P.H., Yaacov, B.D., Shen, X. & Gajendran, B. 2021. An Overview of Heavy Metal Toxicity. ReseachGate.
  • Junaidi, A. & Basir, J. 2012. Aptian to Turonian radiolaria from the Darvel Bay Ophiolite Complex, Kunak, Sabah. Bulletin of Geol. Soc. Malaysia: 58: 89-96.
  • Le Pera, E., Arribas, J., Critelli, S. & Tortosa, A. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): implications for provenance studies. Sedimentology: 48(2): 357-378.
  • Li, N., Feng, D., Wan, S., Peckmann, J., Guan, H., Wang, X., … & Chen, D. 2021. Impact of methane seepage dynamics on the abundance of benthic foraminifera in gas hydrate bearing sediments: New insights from the South China Sea. Ore Geology Reviews: 104247.
  • Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X. & Han, W. 2019. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal: 28(4): 380-394.
  • Lindsay, W.L. 1979. Chemical equilibria in soils. New York: John Wiley & Sons.
  • Luo, J.Z., Sheng, B.X. & Sheng, Q.Q. 2020. A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion. Journal of Fuel Chemistry and Technology: 48 (11).
  • Maher, W., Batkey, G.E. & Lawrence, I. 1999. Assessing the health of sediment ecosystems: Use of chemical measurements. Freshwater Biol.: 41: 361–372.
  • McCauley, A., Jones, C. & Olson-Rutz, K. 2017. Soil pH and Organic Matter. Nutrient Management: 8: 1-4.
  • Moore, C. & Bostrom, K. 1978. The elemental compositions of lower marine organisms. Chemical Geology – CHEM GEOL: 23: 1-9.
  • Muli, M. M. 2017. Metals in Plants and Soils Along a Section of Nairobi. School of Pure and Applied Science, Kenyatta University.
  • Müller, G. 1969. Index of geoaccumulation in the sediments of the Rhine River. Geojournal: 2:108–
  • Myung, C. J. 2008. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine. US National Library of Medicine: 8(4): 2413-2423.
  • Namikas, S.L., Edwards, B.L., Bitton, M.C.A., Booth, J.L. & Zhu, Y. 2010. Temporal and spatial variability in the surface moisture content of a fine-grained beach. Geomorphology: 114: 303–
  • Narejo, A.A., Shar, A.M., Fatima, N. & Sohail, K. 2019. Geochemistry and origin of Mn deposits in the Bela ophiolite complex, Balochistan, Pakistan. Journal of Petroleum Exploration and Production Technology: 9(4): 2543-2554.
  • Neff, J. M. 2002. Bioaccumulation in Marine Organisms. Massachusetts. Elsevier Publisher: 175-189.
  • Nicholson, K., Hein, J.R., Biilm, B. & Dasgupta, S. 1997. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society of London Special Publication: 119: 370.
  • NOAA, U. 1999. Screening Quick Reference Tables (SQuiRTs). Coastal protection and restoration division. National Marine Fisheries Service (NMFS). US Dep. Commer. National Oceanic and Atmospheric Adminstration (NOAA) Tech. Memo.: Our Living Oceans. Report on the status of US living marine resources, 1999.
  • Prasad, R. and J.F. Power. 1997. Soil Fertility Management for Sustainable Agriculture. New York: Lewis Publishers.
  • Sanudin, T. & Baba, M. 2007. Pengenalan kepada Stratigrafi. Kota Kinabalu: Penerbit Universiti Malaysia Sabah.
  • Seaward, M.R.D. & Richardson, D.H.S. 1989. Atmospheric sources of metal pollution and effects on vegetation. Heavy metal tolerance in plants: Evolutionary aspects: 75-92.
  • Schmutz, P. & Namikas, S. 2018. Measurement and modeling of the spatiotemporal dynamics of beach surface moisture content. Aeolian Research: 34: 35–48.
  • Sparks, D.L. 2003. Environmental soil chemistry. London: Elsevier, Academic Press.
  • Sugisaki, R., Sugitani, K. & Adachi, M. 1991. Manganese carbonate bands as an indicator of hemipelagic sedimentary environments. The Journal of Geology: 99(1): 23-40.
  • Taylor, K.G. & Macquaker, J.H. 2011. Iron minerals in marine sediments record chemical environments. Elements: 7(2): 113-118.
  • Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. & Sutton DJ. 2012. Heavy metal toxicity and the environment. Exp Suppl.: 101:133-64.
  • Tomlinson, D.L., Wilson, J.G., Harris, C.R. & Jeffrey, D.W. 1980. Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen: 33(1-4), 566-575.
  • Tongkul, F. 2006. The structural style of Lower Miocene Sedimentary Rocks, Kudat Peninsula, Sabah. Bulletin of the Geol. Soc. of Malaysia: 49: 119-124.
  • Tsai, H.H. & Schmidt, W. 2020. pH-dependent transcriptional profile changes in iron deficient Arabidopsis roots. BMC Genomics: 21: 694.
  • Turekian, K.K. & Wedepohl, K.H. 1961. Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull.: 72(2): 175-92.
  • United States Department of Agriculture, Soil Conservation Service (USDA). 1975. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Soil Surv. Staff. U.S. Dep. Agric. Handbook: 436.
  • U.S. Environmental Protection Agency. 2014. Method 6010D (Revision 4): Inductively coupled-plasma atomic emission spectrometry. Washington, DC: Environmental Protection Agency.
  • Vallius, H., Ryabchuk, D. & Kotilainen, A. 2007. Distribution of heavy metals and arsenic in soft surface sediments of the coastal area off Kotka, northeastern Gulf of Finland, Baltic Sea. Geological Survey of Finland Special Paper: 45: 33–48.
  • Xiang, M., Li, Y., Yang, J., Lei, K., Li, Y., Li, F., Zheng, D., Fang, X. & Cao, Y. 2021. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution: 278.
  • Yang, W., Cao, Z., Zhang, H. & Lang, Y. 2021. A national wide evaluation of heavy metals pollution in surface sediments from different marginal seas along China Mainland, Regional Studies in Marine Science: 42.
  • White, W.M. 2020. Geochemistry: The Oceans as a Chemical System. Oxford: John Wiley & Sons.
  • Wuana, R. & Okieimen, F. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ResearchGate: ISRN Ecology
  • Zhang, X., Zhong, T., Liu, L. & Ouyang, X. 2015. Impact of Soil Heavy Metal Pollution on Food Safety in China. PLoS ONE: 10(8).
  • Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W. & Marhaba, T. 2018. pH effect on heavy metal release from a polluted sediment. Journal of Chemistry.

Download Full Paper Here (Right-Click and Save As)

AN IMAGE ENHANCEMENT METHOD BASED ON A S-SHARP FUNCTION AND PIXEL NEIGHBORHOOD INFORMATION

Libao Yang, Suzelawati Zenian*, Rozaimi Zakaria

Faculty of Science and Natural Resources, Universiti Malaysia Sabah,

88400 Kota Kinabalu, Sabah, Malaysia.

* Corresponding author: Suzelawati Zenian

Email: suzela@ums.edu.my

ABSTRACT. Image enhancement is a significant field in image processing. This paper proposes an enhancement method based on an S-sharp function of grayscale transformation and neighborhood information. Firstly, a function is established based on the sine function. Then, the image threshold is added into the function. Finally, the result grayscales are modified by parameter, where parameter is determined by the image pixel neighborhood information. In general, in the result image, each pixel grayscale is determined by both the sine function with threshold and the parameter . In the experiment results, the NIEM method (we proposed) achieves better performance than the comparison algorithms. It gets the smallest MSE and the highest PSNR, SSIM. In image Lena test, MSE value:330.8151, PSNR value:22.9350, and SSIM value: 0.9451. In image Pout test, MSE value:132.0988, PSNR value:26.9218, and SSIM value: 0.9604.

KEYWORDS. Image enhancement, S-sharp function, Standard deviation, Threshold.

 

REFERENCES

  • Daeyeong, Kim, Changick, and Kim. (2017) Contrast enhancement using combined 1-d and 2-d histogram-based techniques. IEEE Signal Processing Letters, 24(6), 804-808.
  • Magudeeswaran Veluchamy, Bharath Subramani. (2020) Fuzzy dissimilarity color histogram equalization for contrast enhancement and color correction. Applied Soft Computing, 89(1):106077.
  • Pal, S. K. and King, R. A. (1980) Image enhancement using fuzzy set, Electronics letters 16(10), 376-
  • Yang Ciyin, Huang Lianqing. (2002) X-ray image enhancement based on sinusoidal grayscale transformation. Optical Technology, 05,407-408.
  • Gong, C., Luo, C. and Yang, D. (2012) Improved image enhancement algorithm based on sine gray level transformation. Video Engineering 13, 60–63.
  • Lisani, J. L. . (2020) Local contrast enhancement based on adaptive logarithmic mappings. Image Processing On Line, 10, 43-61.
  • Zhang, Y. R. K. Y. and Feng, C. (2020). Image enhancement algorithm based on quadratic function and its implementation with fpga. Modern Electronics Technique 43(8), 72-76,81.
  • Thung, K.-H. and Raveendran, P. (2009) A survey of image quality measures. 2009 international conference for technical postgraduates (TECHPOS), IEEE, pp. 1-4.
  • Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. (2004) Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13(4), 600-612.
  • Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. (2011) The ssim index for image quality assessment, http://www.cns.nyu.edu/ lcv/ssim/ (https://ece.uwaterloo.ca/~z70wang/research/ssim/).
  • Otsu, N..(1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.

Download Full Paper Here (Right-Click and Save As)

Volume 41 (Issue 2, September 2020)

The Composition of Chitin, Chitosan and its Derivatives in the Context of preparation and Usability – A Review.
- Syaheera Md Zin1, Adnin Awalludin1, Newati Wid1, Kamarulzaman Abd. Kadir2 and Mohd Sani Sarjadi1,*

Estimating Mangrove Above-ground Biomass (AGB) in Sabah, Malaysia Using Field Measurements, Shuttle Radar Topography Mission and Landsat Data
- Charissa Jasmine Wong1, Daniel James1, Normah Awang Besar1 and Mui-How Phua1*

Quantifying Aboveground Biomass over 50-Ha Tropical Forest Dynamic Plot in Pasoh, Malaysia Using LiDAR and Census Data
- Hamdan Omar1*, Muhamad Afizzul Misman1  and Yao Tze Leong1

Tourist Satisfaction at Nature-based Tourism Destination around Kota Kinabalu, Sabah
- Talib, H.

Tourist Satisfaction Dimension in Kinabalu Park, Sabah, Malaysia
- Timothy Ajeng Mereng[1], Hamimah Talib1* and Jennifer Chan Kim Lian[2]
Download FULL Journal HERE

THE COMPOSITION OF CHITIN, CHITOSAN AND ITS DERIVATIVES IN THE CONTEXT OF PREPARATION AND USABILITY- A REVIEW

Syaheera Md Zin1, Adnin Awalludin1, Newati Wid1, Kamarulzaman Abd. Kadir2 and Mohd Sani Sarjadi1*

1Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
2Enviro Clean Energy Sdn. Bhd. Suite, Level 5, Bangunan Perkim, No. 150, Jalan Ipoh, 51200, Kuala Lumpur, Malaysia.

*Corresponding author: msani@ums.edu.my

ABSTRACT. The demand for chitosan polymer in domestic and industrial use is increasingly rising. The applications are widely used in the fields of nutrition, cosmetics, biomedical, pharmaceutical, water treatment and agriculture. Normally, the preparation of chitin comes from a bio-waste source and requires three chemical processes including demineralisation, deproteinisation, and discolouration. Meanwhile, the preparation of chitosan from chitin is through the process of deacetylation. The production of chitosan and its derivatives have covered various fields, including synthetic polymers. It has also become a medium and alternative material helping to solve many problems including being able to save time, cost and energy in the production of a material. Then, there will be a positive impact on environmental sustainability and biomedical engineering. The chitin derivatives resulting from deacetylation of chitosan are also flexible enough to be lysosomal enzymes, which can be used as carriers of active drug substances in the body system. Various efforts and research have been carried out on the development of chitosan-based polymeric materials, in particular organic polymers. Chitosanbased polymers can be used as an alternative to replace petroleum and natural gas resources. Besides, it is easy to dispose of, degrades quickly, has a short shelf life and is environmentally friendly. It is proven as many previous reports and studies on the synthesis, characteristics and use of these polymers around the world. The purpose of this review is to explain the properties, methods of preparation and use of chitin, chitosan and its derivatives.

KEYWORDS. Chitosan, chitin, deacetylation, polymer

 

  • REFERENCE
    Allan, C. R. & Hadwiger, L. A. 1979. The fungicidal effect of chitosan on fungi of varrying cell wall composition. Journal in Experimental of Mycol, 3:285-287.
  • Anaraz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G. & Heras, A. 2009. Functional Characterisation of Chitin and Chitosan. Journal of Current Chemical Biology, 3:203-230. Annaduzzaman, M. 2015. Chitosan Biopolymer As An Adsorbent For Drinking Water Treatment: Investigation on Arsenic and Uranium. Thesis, Department of Sustainable Development, Environmental Science and Engineering. Sweden: KTH Royal Institute of Technology.
  • Asford, N. A., Hattis, D. & Murray, A. E. 1977. Industrial prospects for chitin and protein from shellfish wastes. Cambridge, MA: MIT . Atkins, E. 1985. Conformations in polysaccarides and complex carbohydrates. Journal of Bioscience, 8:375-387.
  • Austin, P. R. 1975. Solvents and purification of chitin. Chemical,3(892):731.
  • Austin, P. R., Brine, C. J., Castle, J. E. & Zikaris, J. P. 1981. Chitin: New facets of research. Journal of Science, 212:749.
  • Baxter, A., Dillon, M. & Taylor, K. D. A. 1992. Improved method for IR determination of the degree of N-acetylation of chitosan. International Journal of Biological Macromolecules, 14(3):166- 169.
  • Benavente, M. 2008. Adsorption of metallic ions onto chitosan: Equilibrium and Kinetic Studies. TRITA CHE. Black, C. A. 1965. Methods of Soil Analysis: Part 1 Physical and Mineralogical properties. American Society of Agronomy.
  • Blair, H. S., Guthrie, J., Law, T. & Turkington, P. 1987. Chitosan and modified chitosan membranes I. Preparation and characterisation, J. Appl. Polym. Sci., 33:641 -656.
  • Batista, I. & Roberts, G. A. F. 1990. A novel, facile technique for deacetylating chitin. Markromol. Chem., 191:429-434.
  • Bough, W. A., Salter, W. L., Wu, A. C. M. & Perkins, B. E. 1978. Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. 1. Chemical composition, viscosity, and molecular weight distribution of chitosan products. Biotechnol. Bioeng., 20: 931.
  • Brine, C. J., Sandford, P. A & Zikaris, J. P. 1977. Advances in Chitin and Chitosan Its Composition and Sequences to determined by high-field proton and carbon N.M.R.-spectroscopy- Relation to Solubility. Elsevier Applied Science, 127.
  • Brzeski, D. 1987. Chitin and Chitosan-putting waste to good use. Infofish International Journal, 5:31- 33. Capozza, R. C. 1975. Enzymically decomposable biodegradable pharmaceutical carrier. Ger. Patent, 2(305):505.
  • Charles, W. L., Admed, E. G., Edo, C., Samir, D., Clauzell, S., John, L., Victor, K & Joseph, A. 1994. Potential of induced resistance to control postharvest diseases of fruits and vegetables. 45 Wiltshire Road, Kearneysville: Appalachian Fruit Res. St.
  • Cheba, B. A. 2020. Chitosan: Properties, Modifications and Food Nanobiotechnology, Procedia Manufacturing, 46, 652-658.
  • Chen, R. H., Lin, W. C. & Lin, J. H. 1994. Effects of pH, ionic strength and type of anion on the rheological properties of chitosan solutions. Acta Polymer, 45:41-46.
  • Chenite, A., Buschmann, M., Wang, D., Chaput, C. & Kandani, N. 2001. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers, 46(1):39-47.
  • Cho, Y. I., No, H. K. & Meyer, S. P. 1998. Physicochemical Characteristics and Functional Properties of various Commercial Chitin and Chitosan Products. Journal of Agricultural and Food Chemistry, 46(9):3839-3843.
  • Crini, G. & Pierre-Marie, B. 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33:399-447.
  • Darder, M., Colilla, M. & Ruiz-hitzky, E. 2003. Biopolymer-Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chemical Materials, 15:3374-3780.
  • Day, R. B., Okada, M., Ito, Y., Tsukada, K., Zaghouni, H., Shibuya, N. & Stacey, G. 2001. Binding site for chitin oligosaccharides in the soybean plasma membrane. Journal of Plant Physiology, 126:1162-1173.
  • De Jong, A. J., Heidstra, R., Spaink, H. P., Hartog, M. V., Meijer, E. A., Hendriks, T., Schiavo, F. L., Terzi, M., Bisseling, T., Van Kammen, A. & De Vries, C. 1993. Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant. Journal of Plant Cell, 5:615-620.
  • Del Blanco, L. F., Rodriguez, M. S., Schluz, P. C. & Agullo, E. 1999. Influence of the deacetylation degree on chitosan emulsification properties. Colloid Polymer Science, 277:1087-1092.
  • Domszy, J. & Roberts, G. 1985. Evalution of infrared spectroscopic techniques for analysing chitosan. Macromolecules J. Chem., 186:1671 -1677.
  • Fernandez, K. S. 2004. Physicochemical and Functional Properties of Crawfish Chitosan as Affected by Different Processing Protocols. Seoul, South Korea: Seoul National University.
  • Freepons, D. 1991. Chitosan: Does it have a place in agriculture? Proc. Plant Growth Regul. Soc. Am. , 11-19.
  • Galed, G., Diaz, E., Goycoolea, F. & Heras, A. 2008. Influence of N-deacetylation conditions on chitosan production from alpha-chitin. Natural Products Communications, 3:543-550.
  • Gardner, K. H. & Blackwell, J. 1975. Refinement of the structure of beta-chitin. Bioploymers, 14:1581.
  • Grenha, A., Seijo, B & Remunan, L. C. 2002. Microencapsulated chitosan nanoparticles for lung protein delivery. Europe Journal Pharmaceutical Science, 25(4-5):427-437.
  • Hackman, R. H. 1954. Studies on chitin: I-Enzymatic degradation of chitin and chitin esters. J. Biol. Sci., 7:168.
  • Hirano, S. & Hayashi, K. 1992. Some N-acyl derivatives of O-carboxymethylchitosan. Journal of Carbohydrate in Chemistry, 225:175-178.
  • Gardner, K. H. & Blackwell, J. 1975. Refinement of the structure of beta-chitin. Bioploymers, 14:1581.
  • Jack, G. W. & Paul, A. S. 1955. Chitin and Chitosan. New York: Marcel Dekker, Inc.
  • Jeanes, A., Rogovin, P., Cadmus, M. C., Silman, R. W. & Knutson, C. A. 1974. Polysaccharide (xanthan) of Xanthomonas campestris NRRL B-1459: Procedures for culture maintenance and polysaccharide production, purification and analysis. USA: USDA Report. Jeuniaux, C. 1996. A brief survey of the early contribution of European scientists to chitin knowledge. Journal of Advances in Chitin Sciences, 1-9.
  • Johnson, E. L. & Peniston, Q. P. 1982. Utilisation of shellfish waste from chitin and chitosan production. Westport: Chemistry and Biochemistry of marine Food Products.
  • Jolles, P. & Muzzarrelli, R. A. A. 1999. Chitin and Chitinase. Switzerland: Birkhauser Verlag.
  • Junginer, H. E. & Sadeghi, A. M. M. 2014. Synthesis, Characterisation and Biomedical of Chitosan and Its Derivatives. In S.K. Kim, Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments. USA: Taylor & Francis Group.pp. 15-68
  • Kappel, L. & Gruber, S. 2020. Chapter 12 – Chitin and chitosan—important structural components in Trichoderma cell wall remodeling, New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, 243-280.
  • Kassai, M. 2008. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymer, 71:497-508.
  • Kavitha, K., Keerthi, T. S. & Tamizh, T. M. 2011. Chitosan Polymer used as Carrier in various Pharmaceutical Formulations: Brief Review. International Journal of Applied Biology and Pharmaceutical Technology, 2(2):249-258.
  • Khan, T., Peh, K. & Ch’ng, H. S. 2002. Reporting degree of deacetylation values of chitosan: The influence of analytical methods. J. Phar Pharmaceut Sci., 5(3): 205-212.
  • Kim, S. K. 2014. Chitin and Chitosan Derivatives: Advances in Drug Disocvery and Developments. USA: CRC Press: Taylor & Francis Group.
  • Knaul, J. Z., Hudson, S. M. & Creber, K. A. M. 1999. Polymer Physics. Journal of Polymer Science: Part B, 72:1079-1094. Knorr, D. (1983). Dye binding properties of chitin and chitosan. Journal of Food Science, 48:36-41.
  • Knorr, D. 1984. Use of chitinous polymers in food-a challenge for food research and development. Journal of Food Technology, 38:85-97.
  • Knorr, D. 1991. Recovery and Utilisation of Chitin and Chitosan in Food Processing Waste Management. Food Technology, 114-122.
  • Koide. 1998. Chitin-Chitosan: Properties, Benefits and Risks. Journal of Nutrient Research, 8(6):1091- 1101.
  • Kumar, M. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1):1-27. Kurita, K. 1998. Chemistry and application of chitin and chitosan. Polymer Degradation and Stability, 59:117-120.
  • Kurita, K., Ishiguro, M. & Kitajima, T. 1988. Studies on chitin: Introduction of long chain alkylidene groups and the influence of properties. International Journal of Biomacromolecules, 10:124.
  • Lamarque, G., Lucas, J. M., Viton, C. & Domard, A. 2005. Phsicochemical behaviour of homogeneous series of acetylated chitosans in aqueous solution: Role of various structural parameters. Biomacromolecules, 6:131-142.
  • Lavall, R. L., Assis, O. B. G. & Campana-Filho, S. P. 2007. Chitin from the pens of Loligo sp.: Extraction and Characterisation. Journal of Bioresource Technology, 98: 2465-2472.
  • Li, Q., Dunn, E. T., Grandmaison, E. W. & Goosen, M. F. A. 1992. Applications and properties of chitosan. Journal of Bioreactive and Compatible Polymer, 2:370-397.
  • Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., Boesel, L. F., Oliveira, J. M., Santos, T. C., Marques, M. P., Neves, N. M. & Reis, R. L. 2007. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. Journal of Revised Social Interface, 4:999-1030.
  • Marchessault, R. H., Ravenelle, F. & Zhu, X. X. 2006. Polysaccharides for drug delivery and pharmaceutical applications. American Chemical Society.
  • Marthur, N. K. & Narang, C. K. 1990. Chitin and Chitosan: Versatile polysaccharides from marine animals. Journal of Chemistry Education, 67:938.
  • Mazeau, K., Winter, W. T. & Chanz, H. 2002. Molecular and crystal structure of high-temperature polymorph of chitosan from electron diffraction data. Journal of Macromolecules, 27:7606- 7612.
  • Mima, S., Miya, M., Iwamoto, R. & Yoshikawa, S. 1983. Highly Deacetylated Chitosan and Its Properties. Journal of Applied Polymer Sciences, 28:1909-1917.
  • Minami, E., Kouchi, H., Carlson, R. W., Cohn, J. R., Kolli, V. K., Day, R. B., Ogawa, T. & Stacey, G. 1996. Cooperative action of lipo-chitin nodulation signals on the induction of the early nodulin, ENOD2, in soybean roots. Journal of Molecular Plant Microbe Interaction, 9:574- 583.
  • Moorjani, M. N., Archutha, V. & Khasim, D. I. 1975. Parameters affecting the viscosity of chitosan from prawn waste. J. Food Sci. Tecnol., 12:187-189.
  • Moore, G. K. & Roberts, G. A. F. 1978. Studies on the acetylation of Chitosan. Proceedings of the First International Conference on Chitin/Chitosan. Cambridge, MA: MIT Sea Grant Program. pp. 421-425
  • Morris, E. R., Rees, D. A., Young, G., Walkshaw, M. D. & Darke, E. 1977. Order-disorder transition for a bacterial polysaccharide in solution: A role for polysaccharide confirmation in recognition between Xanthomonas pathogen and its plant host. Journal of Molecular Biology, 110(1).
  • Muzzarelli, R. A. A. 1977. Chitin. New York: Pergamon Press Ltd.
  • No, H. K. & Meyers, S. P. 1995. Preparation and Characterisation of Chitin and Chitosan-A Review. Journal of Aquatic Food Product Technology, 4(2):27-52.
  • No, H. K., Lee, K. S. & Meyer, S. P. 2000. Correlation Between Physicochemical Characteristics and Binding Capacities of Chitosan Products. Journal of Food Science, 65(7):1134-1137.
  • No, H. K., Meyes, S. P. & Lee, K. S. 1989. Isolation and Characterisation of Chitin from Crawfish Shell Waste. Journal of Agricultural and Food Chemistry, 37(3):575-579.
  • No, H. K. & Lee, M. Y. 1995. Isolation of Chitin from Crab Shell Waste. Journal Korean Soc. Food Nutrition, 24(1):105-113.
  • No, H. K. & Meyer, S. P. 1992. Utilisation of Crawfish Processing Wastes as Carotenoids, Chitin and Chitosan Sources. Journal of Korean Society Food Nutrition, 21(3), 319-326.
  • No, H. K. 2000. Application of Chitosan for Treatment of Wastewaters. Rev. Environ. Contam. Toxicol., 163:1-28. No, H. K., Lee, K. S. & Meyer, S. P. 2000. Correlation Between Physicochemical Characteristics and Binding Capacities of Chitosan Products. Journal of Food Science, 65(7)”1134-1137.
  • No, H. K., Cho, Y. I., Kim, H. R. & Meyer, S. P. 2000. Effective Deacetylation of Chitin under Conditions of 15 psi/121degree celcius. Journal od Agriculture and Food Chemistry, 48(6):2625-2627.
  • No, H. K., Kim, S. J. & Meyer, S. P. 1999. Effects of Physical and Chemical Treatments on Chitosan Viscosity. Journal of Korean Society For Chitin and Chitosan, 4(4): 177-183.
  • Nwe, N., Furuike, T. & Hiroshi, T. 2009. Journal of Materials in Chemistry, Materials and Bioengineering, 2(2):374-388. Oskargata. 2014. History of Chitin and Chitosan. USA: Primex. Retrieved December 21, 2015, from http://www.primex.is/AboutUs/The-History-of-Chitin/ Peniston, Q. P. & Johnson, E. L. 1980. Process for the manufacture of chitosan. USA patent, 4(195):175.
  • Pillai, C. K. S., Willi, P. & Chandra, P. S. 2009. Chitin and Chitosan Polymers: Chemistry, solubility and fiber formation. Journal of Progress in Polymer Science, 34:641-678.
  • Ramos, V. M., Rodriguez, N. M., Heras, A. & Agullo, E. 2003. Modified chitosan carrying phosphoric and alkyl groups. Carbohydrate Polymer, 51:425-429.
  • Ravi Kumar, M. N. 2000. A review of chitin and chitosan applications. Reactive Functional Polymers, 46(1):1-27.
  • Rege, P. R. & Block, L. H. 1999. Chitosan processing: Influence of process parameters during acidic and alkaline hydrolysis and effect of the processing sequence on the resultant chitosan’s properties. Carbohydrate Research, 321(3-4):235-245.
  • Rigby, G. W., Park, E. D., Godber, J. S. & Culley, D. D. 1936. Chemical products and process of preparing the same. USA: USA patent. Rinaudo, M. 2006. Chitin and Chitosan: Properties and applications. Prog. Plym. Sci., 31:603-632.
  • Roberts, G. A. & Domszy, J. G. 1982. Determination of the viscometric constants for chitosan. International Journal of Biological Macromolecules, 4(6):374-377.
  • Roller, S. & Covill, N. 1999. The antifungal properties of chitosan in laboratory media in apple juice. International Journal of Food Microbiology, 47:67-77.
  • Rout, S. K. 2001. Physicochemical, Functional, and Spectroscopic analysis of crawfish chitin and chitosan as affected by process modification. Dissertation.
  • Rudall, K. M. & Kechington, W. 1973. The Chitin System. Journal of Biology Revised, 48:597-633.
  • Ruiz-Herrera, J. 1978. The distribution and quantitative importance of chitin in fungi. In R. A. Muzzarrelli (Ed.), Proceedings of the FIrst International Conference on Chitin/Chitosan (p. 11). Cambridge, MA: MIT Sea Grant Program.
  • Sabnis, S. & Block, L. H. 1997. Improved infrared spectroscopic method for the analysis of degree of Ndeacetylation of chitosan. Polymer Bulletin, 39:67-71.

    Schiffman, J. D. & Schauer, C. L. 2009. Solid-state characterisation of [alpha]-chitin from Vanessa cardui Linnaeus wings. Journal of Material Science Chemical Engineering, 29:1370-1374.

  • Setha, S., Kanlayanarat, S. & Gemma, H. 2000. Effect of various molecular weight of chitosan coating on the ripening of caven dish banana. Bangkok, Thailand: Division of Postharvest Technology, King MoongKurt’s university.
  • Shahidi, F. 1995. Role of chemistry and biotechnology in value-added utilisation of shellfish processing discards. Can. Chemistry News, 47, 25-29.
  • Shen, F., Zhong, H., Ge, W., Ren, J. & Wang, X. 2020. Quercetin/chitosan-graft-alpha lipoic acid micelles: A versatile antioxidant water dispersion with high stability, Carbohydrate Polymers, 234, 115927.
  • Sikorski, P., Hori, R. & Wada, M. 2009. Revisit of alpha-chitin crystal structure using high resolution Xray diffraction data. Journal of Biomacromolecules, 10:1100-1105.
  • Smith, J. P., Simpson, B. K. & Morris, J. 1994. Control of psychotropic pathogens in fresh/processed meat and fish products packaged under modified atmosphere. Faculty of Agriculture and Environmental Science, H9X3V9. Quebec: Macdonald Campus of McGill University . Stephen, A. M. 1995. Food Polysaccharides and Their Applications. USA: Marcel Dekker, Inc. Steve, L. T. 2005. Advances in Food and Nutrition Research (Volume 49). USA: Elsevier Academic Press. Struszcyzk, M. H. 2002. Chitin and chitosan – Part 1: Properties and Productions. Polimery, 47:316-325.
  • Synowiecki, J & Al-Khateeb, N. A. 2003. Production, properties and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutrition, 43:145-171. Takai, M., Shimizu, Y., Hayashi, J., Uraki, Y. & Tokuro, S. 1989. NMR and X-ray studies of chitin and chitosan in solid state. In G. A. Skjak-Braek, Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications (p. 431). New York: Elsevier Applied Science.
  • Tan, S. C., Tan, T. K., Wong, S. M. & Khor, E. 1996. The chitosan yield of Zygomycetes at their optimum harvesting time. Carbohydrate Polymer, 30:239-242. Tan, W., Zhang, J., Mi, Y., Dong, F., Li, Q. & Guo, Z. 2020. Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt via azide-alkyne click reaction, International Journal of Biological Macromolecules, 165, Part B, 1765-1772.
  • Tharanathan, R. N. & Kittur, F. S. 2003. Chitin: The undisputed biomolecular of great potential. Critical Review of Food Science Nutrition, 17(1):27-31.
  • Tokura, S. & Azuma, I. 1990. Chitin Derivatives in Life Science. Japan: Japanese Society for Chitin and Chitosan. Tolaimate, A., Debrieres, J., Rhazi, M., Alagui, A., Vincendon, M. & Vottero, P. 2000. On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer, 41:2463-2469.
  • Uthairatanakij, A., Teixera da Silva, J. A. & Obsuwan, K. 2007. Chitosan for improving orchid production and quality. Orchid Science and Biotechnology, 1:1-5.
  • Venkatesan, J. & Kim, S. K. 2010. Chitosan Composites for Bone Tissue Engineering-An Overview. Marine Drugs, 8:2252-2266.
  • Zhang, H., Renping, L. & Weimin, L. 2011. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review. International Journal of Molecular Sciences, 12:917-934.
  • Zikaris, J. P. 1984. Chitin, Chitosan and Related Enzymes. Orlando, FL, USA: Academic Press.

Download Full Paper Here (Right-Click and Save As)

ESTIMATING MANGROVE ABOVE-GROUND BIOMASS (AGB) IN SABAH, MALAYSIA USING FIELD MEASUREMENTS, SHUTTLE RADAR TOPOGRAPHY MISSION AND LANDSAT DATA

Charissa J. Wong1, Daniel James1, Normah A. Besar1 and Mui-How Phua1*

1Faculty of Science and Natural Resources,
Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah, Malaysia

Corresponding author; Mui-How Phua, Telephone Number: +60 (0)88 320000,
Email; pmh@ums.edu.my

 

ABSTRACT. Mangroves are one of the most productive forest ecosystems and play an important role in carbon storage. We examined the use of Shuttle Radar Topography Mission (SRTM) data to estimate mangrove Above-ground Biomass (AGB) in Sabah, Malaysia. SRTM-DEM can be considered as Canopy Height Model (CHM) because of the flat coastal topography. Nevertheless, we also introduced ground elevation correction using a Digital Terrain Model (DTM) generated with GIS and coastal profile data. We mapped the mangrove forest cover using Landsat imagery acquired in 2015 with the supervised classification method (Kappa coefficient of 0.81). Regression analyses of field AGB and the CHMs resulted in an estimation model with the corrected CHM as the best predictor (R2: 0.73) and cross-validated Root Mean Square Error (RMSE) was 19.70 Mg ha-1 (RMSE%: 11.60). Our study showed Sabah has a mangrove cover of 268,631.91 ha with a total AGB of 44,163,207.07 Mg in 2015. This substantial amount of carbon storage should be monitored over time and managed as part of the climate change mitigation strategy.

KEYWORD. Mangroves, SRTM-DEM, Landsat, Above-ground Carbon, Borneo.

 

REFERENCES

  • Aslan, A., Rahman, A.F., Warren, M.W. and Robeson, S.M. (2016). Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sensing of Environment 183:65-81.
  • Basuki, T.M., Van Laake, P.E., Skidmore, A.K. and Hussin, Y.A. (2009). Allometric equations for estimating the aboveground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257(8):1684-1694.
  • Chandra, I.A., Seca, G. and Abu Hena, M.K. (2011). Aboveground Biomass production of Rhizophora apiculata blume in Sarawak mangrove forest. American Journal of Agricultural and Biological Sciences 6(4):469-474. DHI Water and Environment. (2005). Sabah shoreline management plan.
  • DHI Water and Environment, Kota Kinabalu. Food and Agriculture Organization of the United Nations (FAO). (2007). Brief on national forest inventory (NFI): Malaysia. FAO, Rome.
  • Faridah-Hanum, I., Kudus, K.A. and Saari, N.S. (2012). Plant diversity and biomass of Marudu Bay mangroves in Malaysia. Pakistan Journal of Botany 44:151-156.
  • Fatoyinbo, T.E., Simard, M., Washington-Allen, R.A. and Shugart, H.H. (2008). Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. Journal of Geophysical Research 113:G02S06.
  • Fatoyinbo, T.E. and Amstrong, A.H. (2010). Remote Characterisation of Biomass Measurements: Case Study of Mangrove Forests. In Momba MNB (ed) Biomass. IntechOpen, Sciyo, pp 65-78.
  • Fatoyinbo, T.E., Feliciano, E.A., Lagomasino, D., Lee, D.K. and Trettin, C. (2018). Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi Delta. Environmental Research Letters 13:025012.
  • Fayad, I., Baghdadi, N., Guitet, S., Bailly, J.S., Herault, B., Gond, V., El Hajj, M. and Minh, D.H.T. (2016). Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. International Journal of Applied Earth Observation and Geoinformation 52:502-514.
  • Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J. and Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20:154-159.
  • Kanniah, K.V., Sheikhi, A., Cracknell, A.P., Hong, C.G., Kian, P.T., Chin, S.H. and Rasli, F.N. (2015). Satellite images for monitoring mangrove cover changes in a fast growing economic region in Southern Peninsular Malaysia. Remote Sensing 7:14360-14385.
  • Kauffman, J.B., Heider, C., Cole, T.G., Dwire, K.A. and Donato, D.C. (2011). Ecosystem carbon stocks of Micronesian Mangrove Forests. Wetlands 31:343-352.
  • Kirui, K.B., Kairo, J.G., Bosire, J., Viergever, K.M., Rudra, S., Huxham, M. and Briers, R.A. (2013). Mapping of mangrove forest land cover change along the Kenya coastline using Landsat Imagery. Ocean Coastal and Management 83:19-24.
  • Kugler, F., Schulze, D., Hajnsek, I. Papathanassiou, K.P. (2014). TanDEM-X Pol-InSAR performance for forest height estimation. IEEE Transactions on Geoscience and Remote Sensing.
  • Lagomasino, D., Fatoyinbo, T., Lee, S., Feliciano, E., Trettin, C. and Simard, M. (2016). A comparison of mangrove canopy height using multiple independent measurements from land, air and space. Remote Sensing 8:327.
  • Pham, L.T.H. and Brabyn, L. (2017). Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS Journal of Photogrammetry and Remote Sensing 128:86-97.
  • Sabah Forestry Department (SFD). (2016). Sabah Forestry Department Annual Report 2015. Sabah Forestry Department, Sandakan ISSN 1823-0954.
  • Saenger, P. and Snedaker, S.C. (1993). Pantropical trends in mangrove aboveground biomass and annual litterfall. Oecologia 96(3):293-299.
  • Shapiro, A.C., Trettin, C.C., Kuchly, H., Alavinapanah, S. and Bandeira, S. (2015). The mangroves of the Zambezi delta: increase in extent observed via satellite from 1994-2013. Remote Sensing 7:16504-16518.
  • Simard, M., Zhang, K., Rivera-Monroy, V.H., Ross, M.S., Ruiz, P.L., Castaneda-Moya, E., Twilley, R.R., and Rodriguez, E. (2006). Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogrammetric Engineering and Remote Sensing 72(3):299- 311.
  • Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V.H., Castaneda-Moya, E., Thomas, N. and Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 12:40-45.
  • Stringer, C.E., Trettin, C.C., Zarnoch, S.J. and Tang,W. (2015). Carbon stocks of mangroves within the Zambezi River Delta, Mozambique. Forest Ecology and Management 354:139-148.
  • Zhu, Z. and Woodcock, C.E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment 118:83-94.

Download Full Paper Here (Right-Click and Save As)

QUANTIFYING ABOVEGROUND BIOMASS OVER 50-HA TROPICAL FOREST DYNAMIC PLOT IN PASOH, MALAYSIA USING LIDAR AND CENSUS DATA

Hamdan Omar*, Muhamad Afizzul Misman and Yao Tze Leong

Forestry and Environment Division,
Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia

Corresponding author : Hamdan Omar, Phone No.; +603-62797200,
Email : hamdanomar@frim.gov.my

ABSTRACT. Airborne light detection and ranging (LiDAR) instruments have been widely used for quantification of forest biomass. This study investigated the relationships between LiDAR data and aboveground biomass (AGB). The study area is located at the 50-ha dynamic plot in a primary forest area of the Pasoh Forest Reserve, a lowland dipterocarp forest, a type of evergreen tropical moist forest. A number of variables have been produced from the LiDAR metrics. These variables were correlated with AGB that were derived from census data. The study found that the CHM and a few matrices are the best predictors for AGB and therefore used for the estimation of AGB in the entire study area. The estimated AGB ranged from 52 to 718 Mg ha-1, with a root mean square error (RMSE) of about 59 Mg ha-1. The study suggests that the AGB estimates produced by this study are the most accurate – with an accuracy of 83% based on the mean absolute percentage error (MAPE) – as compared to other remotely-sensed based estimates in the study area.

KEYWORD. Center for Tropical Forest Science (CTFS); 50-ha dynamic plot; LiDAR; biomass

REFERENCES

  • Ashton, P.S., Okuda, T. and Manokaran, N. (2003). Pasoh Research, Past and Present. In Pasoh: Ecology and natural history of a Southeast Asian lowland tropical rain forest. Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S.C., Ashton, P.S., Eds.; Springer: Tokyo, Japan. 1–13.
  • Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martinez-Yrizar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pelissier, R., Ploton, P., Ryan, C.M., Saldariagga, J.G. and Vielledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10): 3177-3190.
  • Chen, Q., (2013). Lidar remote sensing of vegetation biomass. Remote Sensing of Natural Resources. 399–420.
  • Chirici, G., McRoberts, R.E., Fattorini, L., Mura, M. and Marchetti, M. (2016). Comparing echobased and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework. Remote Sensing of Environment174: 1–9.
  • Condit, R. 1998. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a comparison with other plots. Springer: University of Michigan, USA.
  • Dong, P. and Chen, Q. (2018). LiDAR Remote Sensing and Applications.
  • Taylor & Francis, Boca Raton, FL. Drake, J.B., Dubayah, R.O., Knox, R.G., Clark, D.B. and Blair, J.B. (2002). Sensitivity of largefootprint LiDAR to canopy structure and biomass in a neotropical rainforest. Remote
    Sensing of Environment, 81: 378–392.
  • Frazer, G.W., Magnussen, S., Wulder, M.A. and Niemann, K.O. (2011 ). Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR derived estimates of forest stand biomass. Remote Sensing of Environment, 115: 636– 649.
  • Frolking, S., Palace, M.W., Clark, D.B., Chambers, J.Q., Shugart, H.H. and Hurtt, G.C. (2009). Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research: Biogeosciences, 114: G00E02.
  • Hamdan, O., Muhamad Afizzul, M. and Abd Rahman, K. (2017). Synergetic of PALSAR-2 and Sentinel-1A SAR Polarimetry for Retrieving Aboveground Biomass in Dipterocarp Forest of Malaysia. Applied Sciences, 7(675).
  • Hamdan, O. and Muhamad Afizzul, M. (2018). Time series maps of aboveground biomass in dipterocarps forests of Malaysia from PALSAR and PALSAR-2 polarimetric data. Carbon Balance and Management, 13:19.
  • Hamdan Omar, Muhamad Afizzul M. and Y.T. Leong Houghton, R.A., Hall, F. and Goetz, S.J. (2009). Importance of biomass in the global carbon cycle. Journal of Geophysical Research, 114: G00E03.
  • Kochummen, K.M., LaFrankie, J.V. and Manokaran, N. (1990). Floristic Composition of Pasoh Forest Reserve a lowland rainforest in Peninsular Malaysia. Journal of Tropical Forest Science, 3: 1–13.
  • Lefsky, M.A., Cohen, W.B., Harding, D.J., Parker, G.G., Acker, S.A. and Gower, S.T. (2002). LiDAR remote sensing of aboveground biomass in three biomes. Global Ecology and Biogeography, 11: 393–399.
  • Lu, D., Chen, Q., Wang, G., Liu, L., Li, G. and Moran, E. (2016). A survey of remote sensing based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9: 63–105.
  • Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., Zhang, M., Vaglio Laurin, G. and Saah, D. (2012). Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. International Journal of Forestry Research, Article ID 436537.
  • Magnussen, S., Næsset, E., Kändler, G., Adler, P., Renaud, J.P. and Gobakken, T. (2016). A functional regression model for inventories supported by aerial laser scanner data or photogrammetric point clouds. Remote Sensing of Environment, 184: 496–505.
  • Mallet, C. and Bretar, F. (2009). Full-waveform topographic LiDAR: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64: 1–16.
  • Manokaran, N. and LaFrankie, J.V. (1990). Stand structure of Pasoh Forest Reserve, a lowland rainforest in Peninsular Malaysia. Journal of Tropical Forest Science, 3: 14–24.
  • Manokaran, N., LaFrankie, J.V., Kochummen, K.M., Quah, E.S., Klahn, J., Ashton, P.S. and Hubbell, S.P. (1990). Methodology for 50-ha research plot at Pasoh Forest Reserve. FRIM Research Pamphlet, No. 104. FRIM: Kepong, Malaysia.
  • Manokaran, N., Quah, E.S., Ashton, P.S., LaFrankie, J.V., Nur Supardi, M.N., Wan Shukri, W.A. and Okuda, T. (2003). Pasoh Forest Dynamic Plot, Peninsular Malaysia. In Tropical  Forest Diversity and Dynamism, findings from a Large-Scale Plot Network. (Eds. Losos, E.C. and Leigh, Jr. E.G.). The University of Chicago Press: Chicago, USA.
  • McGaughey, R. (2009). FUSION/LDV: Software for LiDAR Data Analysis and Visualization. US Department of Agriculture, Forest Service, Pacific Nortwest Research Station.
  • Reutebuch, S.E., McGaughey, R.J. and Strunk, J.L. (2010). Sherman Pass LIDAR Forest Inventory Project. United States Department of Agriculture, Forest Service. Pacific Northwest Research Station. 80.
  • Roussel, J.R., Caspersen, J., Béland, M., Thomas, S. and Achim, A. (2017). Removing bias from LiDAR-based estimates of canopy height: Accounting for the effects of pulse density and footprint size. Remote Sensing of Environment, 198: 1–16.
  • Wan Shafrina, W.M.J., Woodhouse, I.H., Silva, C.A., Omar, H. and Hudak, A.T. (2017). Modelling Individual Tree Aboveground Biomass Using Discrete Return LiDAR in Lowland Dipterocarp Forest of Malaysia. Journal of Tropical Forest Science 29(4): 465– 484.
  • Wan Shafrina, W.M.J., Woodhouse, I.H., Silva, C.A., Omar, H., Khairul Nizam, A.M., Hudak, A.T., Klauberg, C., Cardil, A. and Mohan, M. (2018). Improving Individual Tree Crown Delineation and Attributes Estimation of Tropical Forests Using Airborne LiDAR Data. Forests. 9(759).
  • Wyatt-Smith, J. (1987). Manual of Malayan silviculture for inland forest, Part 3-Chapter 8. Red meranti-keruing forest. FRIM Research Pamphlet No. 101; FRIM: Kepong, Malaysia.
  • Zolkos, S.G., Goetz, S.J. and Dubayah, R. (2013). A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128: 289–298.

Download Full Paper Here (Right-Click and Save As)

TOURIST SATISFACTION AT NATURE-BASED TOURISM DESTINATION AROUND KOTA KINABALU, SABAH

Hamimah Talib1*
1 Faculty of Science and Natural Resources,
Universiti Malaysia Sabah,
Kota Kinabalu, Sabah, Malaysia.

Corresponding author; Hamimah Talib, Cell; +6016 9980701, Email; hamima@ums.edu.my

ABSTRACT. Kota Kinabalu, Sabah has been famed as Nature Resort City where nature-based destinations in and around the city have been the major tourist attractions. Nonetheless, the question whether the visitors are satisfied with their experience at the major nature-based tourism destination or otherwise is still vague. The purpose of this study is to understand the recreational experience and satisfaction of tourist in selected nature-based tourism sites in Kota Kinabalu, Sabah. A mixedmethod approach incorporating quantitative data derived using Driver’s Recreation Experience Preference Scale, and qualitative data using Herzberg’s Critical Incident Technique were deployed. The sampling technique used in this study was purposive non-probability sampling with the participation of 240 tourists. Factor analysis was run on the quantitative dataset to derive the major outcome which is the set of profile on tourist recreational experience. While content analysis was conducted on the qualitative dataset to derive explanation for tourist satisfaction/dissatisfaction. Triangulation between the two types of datasets strengthens the major finding which is the tourist satisfaction in nature-based tourism destination around Kota Kinabalu, Sabah. The finding of this study is crucial for satisfaction enhancement and critical for identification of areas to be improved, subsequently solutions to be recommended.

KEYWORDS. Tourist Satisfaction, Nature-Based Tourism

 

REFERENCES

  • Ceballos-Lascurain, H. 1996. Tourism, Eco-Tourism and Protected Areas. IUCN. The World Conservation Union. Gland, Switzerland.
  • Chan, J.K.L. (2006). Herzberg’s Dual Factor Theory to Tourism Experiences: Satisfiers and Dissatisfiers. Asia-Euro Tourism, Culture and Gastronomy Conference 2006: West meets East: A Recipe of Success in this Era of Globalization? 9-10 November 2006, Taylors College, School of Hospitality and Tourism, Petaling Jaya, Malaysia.
  • Chan, J.K.L., and Baum, T. (2007). Ecotourists’ Perception of Ecotourism Experience in Lower Kinabatangan, Sabah, Malaysia. Journal of Sustainable Tourism, Vol 5 Issue 15, 2007.
  • Coakes, S.J. and Steed, L. (2007) SPSS: Analysis without Anguish Using SPSS Version 14.0 for Windows . Australia: John Wiley & Sons Australia, Ltd.
  • Dodds, R. and Butler, R. (2010). Barriers to implementing sustainable tourism policy in mass tourism destination. Tourismos, Vol.5, No.1, pp.35-54.
  • Driver, B.L., Tinsley, H.E.A., and Manfredo, M.J. (1991). The Paragraph About Leisure and Recreation Experience Preference Scales: Results from Two Inventories Designed to Assess the Breadth of the Perceived Psychological Benefits. In B.L.
  • Driver P.J. Brown, and G.L. Peterson (Eds), Benefits of Leisure (pp.263-286). State College, PA: Venture Publishing.
  • Herzberg, F. (1972). Work and the nature of man. Cleveland, OH: World Publishing.
  • Patton, M.Q. (2002) Qualitative Research and Evaluation Methods. Thousand Oaks, CA: Sage. Pearce, P.L. (2005). Tourist Behavior: Themes and Conceptual Schemes. Viva Books Private Limited, Ansari Road, New Delhi.
  • Pine, B.J. & Gilmore, J.H. 1999. The Experience Economy: Work is Theatre and Every Business A Stage. Boston, Massachussets, Harvard Business School Press.
  • Talib, H. (2011). Tropical forest recreation: Visitors’ experience and satisfaction in Kinabalu Park, Sabah. Universiti Malaysia Sabah.

Download Full Paper Here (Right-Click and Save As)

TOURIST SATISFACTION DIMENSION IN KINABALU PARK, SABAH, MALAYSIA

Timothy Ajeng Mereng1, Hamimah Talib1* and Jennifer Chan Kim Lian2
1 Forestry Complex, Faculty of Science and Natural Resources, Universiti Malaysia Sabah
2 Borneo Tourism Research Centre, Faculty of Business, Economics and Accountancy, Universiti Malaysia Sabah

Corresponding author; Hamimah Talib, Cell; +6016 9980701, Email; hamima@ums.edu.my

ABSTRACT. This paper aims to identify the tourist satisfaction dimensions in Kinabalu Park as a World Heritage Site, to come out with the tourist satisfaction indicators for responsible rural tourism framework at Kinabalu Park, Sabah, Malaysia, in terms of satisfaction and dissatisfaction dimension. One of the data sources to achieve this aim is the in-depth interview session with the tourist in Kinabalu Park, specifically the mountain climbers. The interview was conducted with Herzberg’s Critical Incident Technique (CIT), which is a method that asks the respondents to recall their exceptionally good feeling as well as their exceptionally bad feeling during their experience in Kinabalu Park. The data were analyzed thematically based on Driver’s Recreation Experience Preference (REP) scale to identify the tourists’ satisfaction dimension. Our study found that “scenery enjoyment” was the most prevalent domain for a satisfying experience or the source of good feeling. Along with the “scenery enjoyment”, there were other three emerging experience domains that could contribute to understanding the tourist satisfaction dimensions in Kinabalu Park.

KEYWORDS. Tourist Satisfaction Dimension, Kinabalu Park

 

REFERENCES

  • Alegre, J. and Garau, J. (2010). Tourist Satisfaction and Dissatisfaction. Annals of Tourism Research, Vol. 37, No. 1, pp. 52-73.
  • Driver, B.L. (1983). Master list of items for Recreation Experience Preference scales and domains. Unpublished Document. USDA Forest Service, Fort Collins, CO: Rocky Mountain Forest and Range Experiment Station.
  • Faleye, O., Hoitash, R. and Hoitash, U. (2000), Improving your measurement of customer satisfaction. A guide to creating, conducting, analyzing, and reporting customer satisfaction measurement programs, Journal of the Academy of Marketing Science, Vol. 101, No. 2, p. 490.
  • Fuchs, M. and Weiermair, K. (2003). New perspectives of satisfaction research in tourism destinations. Tourism Review, 58(3), 6–14.
  • Fuller, J. and Matzler, K. (2007). Customer delight and market segmentation: An application of the three-factor theory of customer satisfaction on life style groups. Tourism Management, 29(1).
  • Timothy Ajeng Mereng, Hamimah Talib and Jennifer Chan Kim Lian Herzberg, F.W. (1966). Work and the nature of man. Cleveland: World Publishing. Kano, N. (1984). Attractive quality and must-be quality. Journal of the Japanese Society for Quality Control, 1(4), 39-48.
  • Kano, N., Seraku, N., Takahashi, F. and Tsuji, S. (1984). Attractive quality and must-be quality. Quality: The Journal of the Japanese Society for Quality Control, 14(April), 39-48.
  • Kitayama, K. (1991 ). Vegetation of Mount Kinabalu Park Sabah, Malaysia: A Project Paper. Protected Areas and Biodiversity Environment and Policy Institute.
  • Knopf, R.C. (1976). Relationships between desired consequences of recreation engagements and conditions in home neighborhood environments. Unpublished doctoral dissertation, University of Michigan, Ann Arbor.
  • Knopf, R.C. (1983). Recreational needs and behavior in natural settings. In J. F. Wohlwill (Ed.), Behavior and the Natural Environment, pp. 205-240. New York: Plenum Publishing.
  • Knopf, R.C., Driver, B.L. and Bassett, J.R. (1973). Motivations for fishing. In Transactions of the 28th North American Wildlife and Natural Resources Conference, pp. 191 -204.Wash., DC: Wildlife Management Institute.
  • Knopf, R.C., Peterson, G.L. and Leatherberry, E.C. (1983). Motives for recreational river floating: Relative consistency across settings. Leisure Sciences, 5(3), 231 -25
  • Lo, M.C., Songan, P., Mohamad, A.A. and Yeo, A.W. (2011). Rural destination and tourists’ satisfaction, Journal of Services Research. Pp. 58-74.
  • Matzler, K., Sauerwein, E. and Heischmidt, K. (2003). Importance-performance analysis revisited: The role of the factor structure of customer satisfaction. The Service Industries Journal, 23(2), 112–129.
  • Mereng, T.A., Talib, H. and Chan, J.K.L. (2016). Tourist Satisfaction Indicators for Responsible Rural Tourism Framework: A Case of Kinabalu National Park. Proceeding of the International Social Sciences Academic Conference (ISSAC 2016), ISBN 978-967-13637-5- 1.
  • Mittal, V., Ross, W.T. and Baldasare, P.M. (1998). The asymmetric impact of negative and positive attribute-level performance on overall satisfaction and repurchase intentions. Journal of Marketing, 62(1), 33–47.
  • Phillipps, A. and Liew, F. (2005). Globetrotter Visitor’s Guide – Kinabalu Park, New Holland Publishers (UK) Ltd. Slevitch, L. and Oh, H. (2010), Asymmetric relationship between attribute performance and customer satisfaction: A new perspective, International Journal of Hospitality Management, Vol. 29, No. 4, pp. 559-569.
  • Talib, H., Chan, J.K.L. and Mereng, T.A. (2014). Sustaining Tourist Satisfaction in Mt. Kinabalu, Sabah, EDP Sciences, SHS web of Conferences, Vol.12, 2014, http://dx.doi.org/10.1051/shsconf/20141201024, 19 Nov.2014.
  • Tontini, G. and Silveira, A. (2007), Identification of satisfaction attributes using competitive analysis of the improvement gap, International Journal of Operations Production Management, Vol. 27, No. 5, pp. 482-500.
  • Walker, R. (1985). An Introduction to Applied Qualitative Research, in R. Walker (ed) Applied Qualitative Research. Vermont, Gower Publishing. World Tourism Organization (WTO). (1985). Identification and Evaluation of those Components of Tourism Satisfaction and which can be Regulated and State Measures to Ensure Adequate Quality of Tourism Services. World Tourism Organisation, Madrid.

Download Full Paper Here (Right-Click and Save As)

Volume 41 (Issue 1), March 2020

A REVIEW ON CONSTRUCTED GENETIC CASSETTES IN YEAST FOR RECOMBINANT PROTEIN PRODUCTION
– Sk Amir Hossain1*, Chanchal Mandal1, Toufiq Ahmed1 & S.M Rifat Rahman1

HEAT CONTENT AND BURNING TIME OF TROPICAL PEAT
– 
Dayang Nur Sakinah Musa*, Rebecca Mishallyne Afat, Melissa Sharmah Gilbert, Kamlisa Uni Kamlun

THE OUTLOOK OF RURAL WATER SUPPLY IN DEVELOPING COUNTRY : REVIEW ON SABAH, MALAYSIA
- Rosalam Sarbatly1, Farhana Abd Lahin2*, Chel-Ken Chiam3

ABOVE AND BELOW-GROUND CARBON STOCK IN Acacia mangium STAND IN SABAH
– Tan Chun Hung 1 , Normah Awang Besar 1* , Mohamadu Boyie Jalloh 2 , Maznah Mahali 1 , Nissanto Masri 3

PHYTOCHEMICAL AND ANTIMICROBIAL INVESTIGATION AND COMPARISON BETWEEN YOUNG AND MATURE Psidium guajava LEAVES EXTRACT
- TOMMY NATHANIEL NASIRI, SURAYA ABDUL SANI, RAHMATH ABDULLAH, AINOL AZIFA, MOHD FAIK, ROSLINA JAWAN, AND MOHD KHALIZAN SABULLAH*

CHARACTERIZATION OF OIL PALM LEAF PAPER WITH STARCH AS BINDER
- Sabrina Soloi1*, Adib Afifi Mohammad1

Download FULL Journal HERE

 

 

 

A REVIEW ON CONSTRUCTED GENETIC CASSETTES IN YEAST FOR RECOMBINANT PROTEIN PRODUCTION

Sk Amir Hossain1 *, Chanchal Mandal1, Toufiq Ahmed1 & S.M Rifat Rahman1
1Biotechnology and Genetic Engineering discipline, Khulna University, Khulna, Bangladesh
* Corresponding author: isti_99@yahoo.com

ABSTRACT. Conventional methods for covalent immobilization of proteins often result in denaturation due to chemical treatments. However, proteins immobilized at microbial cell surfaces by regular cellular processes could be bound covalently to the cell wall without being exposed to chemical treatment. Yeasts display systems provide several advantages over bacterial system. The secretory and post-translational pathway in yeast, are similar to those of higher eukaryotes which established them as better hosts for production of eukaryotic proteins. The expression of recombinant proteins immobilized at the cell surface ofSaccharomyces cerevisiae has now been practiced for the last two decades. Although different surface display systems have been made for specific purposes, the system with broad applicability has not been developed so far. Most of the vectors constructed for surface display of recombinant proteins in yeast so far were created for single-use in particular case with ubiquitous laboratory plasmids that were not optimized for this purpose. Therefore, the construction of a new set of plasmids with optimized genetic cassette is still in demand. An optimized genetic cassette should allow easy and simple insertion of any gene of interest, with regulated and easily controlled expression level. In this review, we have tried to make a detailed study on all the genetic components used in successful yeast display systems till now in order to provide a good knowledge which will help the future researchers of this field to design an optimized genetic cassette which would be used for industrial scale application.

KEYWORDS: Yeast display system, yeast cell wall proteins, genetic cassette and recombinant protein.

  • REFERENCE
    Andrés, I., Gallardo, O., Parascandola, P., Javier Pastor, F.I. &Zueco, J. 2005. Use of the cell wall protein Pir4 as a fusion partner for the expression of Bacillus sp. BP‐7 xylanaseA in Saccharomyces cerevisiae. Biotechnology and bioengineering 89(6): 690-697.
  • Boder, E.T. & Wittrup, K.D. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nature biotechnology 15(6): 553.
  • Boder, E.T. & Wittrup, K.D. 2000. Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430-344.
  • Boder, E.T., Bill, J.R., Nields, A.W., Marrack, P.C. & Kappler, J.W. 2005. Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide. Biotechnology and bioengineering 92(4): 485-491.
  • Cabib, E., Roberts, R. & Bowers, B. 1982. Synthesis of the yeast cell wall and its regulation. Annual review of biochemistry 51(1): 763-793.
  • Caro, L.H.P., Tettelin, H., Vossen, J.H., Ram, A.F., Van Den Ende, H. & Klis, F.M. 1997. In silicio identification of glycosyl phosphatidylinositol anchored plasma membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13(15): 1477-1489.
  • Chao, G., Cochran, J.R., & Wittrup, K.D. 2004.Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. Journal of molecular biology 342(2): 539-550.
  • Chen, I., Dorr, B.M. & Liu, D.R. 2011.A general strategy for the evolution of bond-forming enzymes using yeast display.Proceedings of the National Academy of Sciences108(28): 11399- 11404.
  • Cherf, G.M. & Cochran, J.R. 2015.Applications of yeast surface display for protein engineering in yeast surface display.Methods Mol Bio 1319:155-75.
  • Cho, B. K., Kieke, M. C., Boder, E. T., Wittrup, K. D., &Kranz, D. M. (1998). A yeast surface display system for the discovery of ligands that trigger cell activation. Journal of immunological methods, 220(1-2), 179-188. Colby, D.W.,
  • Garg, P., Holden, T., Chao, G., Webster, J.M., Messer, A., …& Wittrup, K.D. 2004. Development of a human light chain variable domain (VL) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. Journal of molecular biology 342(3): 901 -912.
  • Colby, D.W., Kellogg, B.A., Graff, C.P., Yeung, Y.A., Swers, J.S. & Wittrup, K.D. 2004.Engineering antibody affinity by yeast surface display.Methods Enzymol 388: 348- 358.
  • Ecker, M., Deutzmann, R., Lehle, L., Mrsa, V. & Tanner, W. 2006.Pir proteins of Saccharomyces cerevisiae are attached to β-1, 3-glucan by a new protein-carbohydrate linkage. Journal of Biological Chemistry 281(17): 11523-11529.
  • Feldhaus, M.J., Siegel, R.W., Opresko, L.K., Coleman, J.R., Feldhaus, J.M.W., Yeung, Y.A. , …& Graff, C. 2003. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nature biotechnology 21(2): 163.
  • Furukawa, H., Tanino, T., Fukuda, H. & Kondo, A. 2006. Development of novel yeast cell surface display system for homo oligomeric protein by coexpression of native and anchored subunits. Biotechnology progress 22(4): 994-997.
  • Gai, S.A. & Wittrup, K.D. 2007. Yeast surface display for protein engineering and characterization.
    Current opinion in structural biology 17(4): 467-473. Han, T., Sui, J., Bennett, A., Liddington, R.C., Donis, R.O., Zhu, W. & Marasco, W.A. 2012. Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem biophys res commun 409(2): 253-259.
  • Hossain, S.A. 2018. Surface display of heterologous proteins in the yeast cell wall and their application in biotechnology. Doctoral dissertation, Faculty of food technology and biotechnology, University of Zagreb, Croatia.
  • Jarjour, J., West-Foyle, H., Certo, M.T., Hubert, C.G., Doyle, L., Getz, M.M., …& Scharenberg, A.M. 2009. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic acids research 37(20): 6871 -6880.
  • Jarjour, J., West-Foyle, H., Certo, M.T., Hubert, C.G., Doyle, L., Getz, M.M., …& Scharenberg, A.M. 2009. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic acids research 37(20): 6871 -6880.
  • Kaya, M., Ito, J., Kotaka, A., Matsumura, K., Bando, H., Sahara, H., …& Kondo, A. 2008. Isoflavoneaglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillusoryzae on yeast cell surface. Applied Microbiology and Biotechnology 79(1): 51 -60.
  • Kieke, M.C., Cho, B.K., Boder, E.T., Kranz, D.M. &Wittrup, K.D. 1997.Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein engineering 10(11): 1303-1310.
  • Klis, F.M., Boorsma, A. & De Groot, P.W. 2006.Cell wall construction in Saccharomyces cerevisiaeYeast 23(3): 185-202.
  • Klis, F.M., Mol, P., Hellingwerf, K. & Brul, S. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS microbiology reviews 26(3): 239-256.
  • Kollár, R., Petráková, E., Ashwell, G., Robbins, P.W. & Cabib, E. 1995.Architecture of the yeast cell wall the linkage between chitin and β (13)-glucan. Journal of Biological Chemistry 270(3): 1170-1178.
  • Kollár, R., Reinhold, B.B., Petráková, E., Yeh, H.J., Ashwell, G.,Drgonová, J., …& Cabib, E. 1997. Architecture of the yeast cell wall β (1→ 6)-glucan interconnects mannoprotein, β (1→ 3)- glucan, and chitin. Journal of Biological Chemistry 272(28): 17762-17775.
  • Lee, H.W., Lee, S.H., Park, K.J., Kim, J.S., Kwon, M.H. & Kim, Y.S. 2006. Construction and characterization of a pseudo-immune human antibody library using yeast surface display. Biochem and biophys res commun 346(3): 896-903.
  • Levin, D.E. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189(4): 1145-1175.
  • Levy, R., Forsyth, C.M., LaPorte, S.L., Geren, I.N., Smith, L.A. & Marks, J.D. 2007. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. Journal of molecular biology 365(1): 196-210.
  • Levy, R., Forsyth, C.M., LaPorte, S.L., Geren, I.N., Smith, L.A., & Marks, J.D. 2007. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. Journal of molecular biology365(1): 196-210.
  • Li, J., Wang, Y., Liang, Y., Ni, B., Wan, Y., Liao, Z., …& Wang, S. 2009. Fine antigenic variation within H5N1 influenza virus hemagglutinin’s antigenic sites defined by yeast cell surface display. European journal of immunology 39(12): 3498-3510.
  • Lipke, P.N. & Ovalle, R. 1998. Cell wall architecture in yeast: new structure and new challenges. Journal of bacteriology 180(15): 3735-3740.
  • Magnelli, P., Cipollo, J.F. & Abeijon, C. 2002.A refined method for the determination of Saccharomyces cerevisiaecell wall composition and β-1, 6-glucan fine structure.Analytical biochemistry 301(1): 136-150.
  • Matano, Y., Hasunuma, T. & Kondo, A. 2012.Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresource technology 108: 128-133.Sk Amir Hossain, Chanchal Mandal, Toufiq Ahmed & S.M Rifat Rahman Matsumoto, T., Fukuda, H., Ueda, M., Tanaka, A. & Kondo, A. 2002. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl. Environ. Microbiol.68(9): 4517-4522.
  • Moukadiri, I. & Zueco, J. 2001.Evidence for the attachment of Hsp150/Pir2 to the cell wall of Saccharomyces cerevisiae through disulfide bridges.FEMS yeast research 1(3): 241 -245.
  • Murai, T., Ueda, M., Yamamura, M., Atomi, H., Shibasaki, Y., Kamasawa, N., …& Tanaka, A. 1997. Construction of a starch-utilizing yeast by cell surface engineering. Appl. Environ. Microbiol. 63(4): 1362-1366.
  • Nakamura, Y., Shibasaki, S., Ueda, M., Tanaka, A., Fukuda, H. & Kondo, A. 2001. Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Applied microbiology and biotechnology 57(4): 500-505.
  • Orlean, P. 1997. Biogenesis of Yeast Wall and Surface Components. Cold Spring Harbor Monograph Archive 21: 229-362.
  • Orlean, P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall.Genetics 192(3): 775-818.
  • Orr, B.A., Carr, L.M., Wittrup, K.D., Roy, E.J. &Kranz, D.M. 2003.Rapid method for measuring ScFv thermal stability by yeast surface display. Biotechnology progress 19(2): 631 -638.
  • Osumi, M. 1998. The ultrastructure of yeast: cell wall structure and formation. Micron 29(2-3): 207- 233.
  • Pagé, N., Gérard-Vincent, M., Ménard, P., Beaulieu, M., Azuma, M., Dijkgraaf, G.J., …& Sdicu, A.M. 2003. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin.Genetics 163(3): 875-894.
  • Parthasarathy, R., Subramanian, S., Boder, E.T. & Discher, D.E. 2006.Post‐translational regulation of expression and conformation of an immunoglobulin domain in yeast surface display. Biotechnology and bioengineering 93(1): 159-168.
  • Richman, S.A., Kranz, D.M., & Stone, J.D. 2009. Biosensor detection systems: engineering stable, high-affinity bioreceptors by yeast surface display. Methods MolBiol 504: 323-350.
  • Ruiz-Herrera, J. 2016.Fungal cell wall: structure, synthesis, and assembly.CRC press.
  • Shusta, E.V., Pepper, L.R., Cho, Y.K. & Boder, E.T. 2008. A decade of yeast surface display technology: where are we now? Combinatorial chemistry & high throughput screening 11(2): 127-134.
  • Szczupak, A., Kol-Kalman, D. & Alfonta, L. 2012. A hybrid biocathode: surface display of O 2- reducing enzymes for microbial fuel cell applications. Chemical Communications 48(1): 49-51.
  • Tsai, S.L., DaSilva, N.A. & Chen, W. 2012.Functional display of complex cellulosomes on the yeast surface via adaptive assembly.ACS synthetic biology 2(1): 14-21.
  • Ueda, M. & Tanaka, A. 2000.Genetic immobilization of proteins on the yeast cell surface. Biotechnology advances 18(2): 121 -140.
  • Van Antwerp, J.J. & Wittrup, K.D. 2000. Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnology progress 16(1): 31 -37.
  • Van der Vaart, J.M., Caro, L.H., Chapman, J.W., Klis, F.M. &Verrips, C.T. 1995.Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. Journal of bacteriology 177(11): 3104-3110.
  • Wang, K.C., Patel, C.A., Wang, J., Wang, J., Wang, X., Luo, P.P. & Zhong, P. 2010. Yeast surface display of antibodies via the heterodimeric interaction of two coiled-coil adapters. Journal of immunological methods 354(1-2): 11 -19.
  • Yang, N., Yu, Z., Jia, D., Xie, Z., Zhang, K., Xia, Z., …& Qiao, M. 2014. The contribution of Pir protein family to yeast cell surface display. Applied microbiology and biotechnology 98(7): 2897-2905.
  • Yue, L., Chi, Z., Wang, L., Liu, J., Madzak, C., Li, J. & Wang, X. 2008.Construction of a new plasmid for surface display on cells of Yarrowia lipolytica. Journal of Microbiological
    Methods 72(2): 116-123

Download Full Paper Here (Right-Click and Save As)

HEAT CONTENT AND BURNING TIME OF TROPICAL PEAT

Dayang Nur Sakinah Musa*, Rebecca Mishallyne Afat, Melissa Sharmah Gilbert, Kamlisa Uni Kamlun

Forestry Complex, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.

*Corresponding author : dns.m@ums.edu.my

ABSTRACT. Peat composes of organic matter and easily drying out during the dry season. This situation will result in a smouldering fire in peat swamp forest especially with the help of El-Nino phenomenon and eventually will destroy home for endangered species such as Orangutan. It is important in order to study the effect of forest fire on peat thermal properties. The study was conducted in Binsuluk Forest Reserve, Sabah, Malaysia, The aims of this study were to measure the heat of content and burning time of peat at a different level and to find the relationship of the heat of content in Binsuluk Forest Reserve. Samples of burnt peat were taken using an auger at 1.5 m, 2.0 m, 2.5 m and 3.0 m depths. The peat samples were tested for heat of content (MJ Kg-1) and burning time (minutes). Results shown that peat has a higher heat of content at a depth of 3.0 m with 51.652.07 MJ Kg-1 and lower heat of content at 2.5 m depth with 49.600.46 MJ Kg-1. Burnt peat takes longer time recorded at 3.0 m peat depth with mean value of 127.201.88 minutes and the shorter time recorded at the depth of 1.5 m with mean 101.400.51 minutes. Thus, these data suggest that increases in the heat of content of the peat can increase the time for the peat to completely burnt. The heat content and burning time were perhaps influenced by the moisture content of the peat in Binsuluk Forest Reserve with range of moisture content between 209.880.18 % to 1013.511.39 % . The information on thermal properties of peat in Sabah is important for the forest managers and researchers to get an idea of the impact of forest fire on peat and can create better management on the peat swamp forest area.

KEYNOTES: Peat swamp forest, Peat fire, Burning time, Heat of Content

 

REFERENCE

  • Boehm, H. D. V., Siegert, F., Rieley, J. O., Page, S. E., Jauhiainen, J., Vasander, H., & Jaya, A. (2001, November). Fire Impacts And Carbon Release On Tropical Peatlands In Central Kalimantan, Indonesia. In Proceedings Of The 22nd Asian Conference On Remote Sensing (Pp. 5-9). Cattau, M. E., Harrison, M. E., Shinyo, I., Tungau, S., Uriarte, M., & DeFries, R. (2016). Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Global Environmental Change, 39, 205-219.
  • Comas, X., Terry, N., Slater, L., Warren, M., Kolka, R., Kristiyono, A., … & Darusman, T. (2015). Imaging Tropical Peatlands In Indonesia Using Ground-Penetrating Radar (Gpr) And Electrical Resistivity Imaging (Eri): Implications For Carbon Stock Estimates And Peat Soil Characterization. Biogeosciences, 12(10), 2995-3007. Frandsen, W.H. (1997). Ignition probability of organic soils. Canadian Journal of Forest Research, 27(9), 1471 -1477.
  • Huang, X., & Rein, G. (2019). Upward-and-downward spread of smoldering peat fire. Proceedings of the Combustion Institute, 37(3), 4025-4033. Huang, X., Francesco, R., Michela, G., & Guillermo, R. (2016). “Experimental Study of the Formation and Collapse of an Overhang in the Lateral Spread of Smouldering Peat Fires.” Combustion and Flame 168: 393–402. IKA. (1998). IKA-Calorimeter system C 5000 Manual.
  • Melling, L., Uyo, L. J., Goh, K. J., Hatano, R., & Osaki, M. (2006). Soils Of Loagan Bunut National Park, Sarawak, Malaysia-Final Report. Undp/Gef Funded Project On The Conservation And Sustainable Use Of Tropical Peat Swamp Forests And Associated Wetland Ecosystems.
  • Musa, D.N.S., & Ramli, S.N. (2017). “Fire Threat in Peat Swamp Forest in Malaysia.” In Biology Vol. 1 Emerging Themes in Fundamental and Applied Sciences, , Chapter 3. Musa, D. N. S., & Nuruddin, A.A. (2015). “Calorific Value of Leaves of Selected Dipterocarp Trees Species in Piah Forest Reserve, Perak.” Journal of Tropical Resources and Sustainable Science 3(1): 132–34.
  • Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global And Regional Importance Of The Tropical Peatland Carbon Pool. Global Change Biology, 17(2), 798-818.
  • Putra, R., Sutriyono, E., Kadir, S., & Iskandar, I. (2019). UNDERSTANDING OF FIRE DISTRIBUTION IN THE SOUTH SUMATRA PEAT AREA DURING THE LAST TWO DECADES. INTERNATIONAL JOURNAL OF GEOMATE, 16(54), 146-151.
  • Rein, G., Cohen, S., & Simeoni, A. (2009). Carbon Emissions From Smouldering Peat In Shallow And Strong Fronts. Proceedings Of The Combustion Institute, 32(2), 2489-2496. SFD. (201 6). Sabah Forestry Department Annual Report 201 6. Pg.219. SFD. (2019). Map of Binsuluk Forest Reserve (Class 1).
  • Syaufina, L., Nuruddin, A. A., Basharuddin, J., See, L. F., & Yusof, M. R. M. (2004). The effects of climatic variations on peat swamp forest condition and peat combustibility. Jurnal Manajemen Hutan Tropika, 10(1).
  • Usup, A., Hashimoto, Y., Takahashi, H., & Hayasaka, H. (2004). Combustion And Thermal Characteristics Of Peat Fire In Tropical Peatland In Central Kalimantan, Indonesia. Tropics, 14(1), 1 -19.
  • Yoshino, K., Nagano, T., Ishida, T., Ishioka, Y., & Sirichuaychoo, W. (2002). Distribution Of Peat Depth In Tropical Peat Swamp Area In Narathiwat Of The Southern Part Of Thailand. Rural
    And Environment Engineering, 2002(43), 13-22.
  • Zainorabidin, A., & Mohamad, H. M. (2016). A Geotechnical Exploration Of Sabah Peat Soil: Engineering Classifications And Field Surveys. Ejge, 21, 6671 -6687.

 

Download Full Paper Here (Right-Click and Save As)

THE OUTLOOK OF RURAL WATER SUPPLY IN DEVELOPING COUNTRY: REVIEW ON SABAH, MALAYSIA

Rosalam Sarbatly1, Farhana Abd Lahin2*, Chel-Ken Chiam3
1, 2, 3 Membrane Technology Research Group, Material and Mineral Research Unit, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, MALAYSIA

Email: 1rslam@ums.edu.my, 2*farhana.abdlahin@ums.edu.my, 3chiamchelken@ums.edu.my

ABSTRACT. This paper reviews the challenges in the water supply provision, water source availability and quality and the distribution approaches in rural Sabah. The main challenges to provide potable water in Sabah is the variance in terrain and geographical distance between populated regions. Review reveals that other than the river water, average annual precipitation of 3000 millimetres (mm) could be harvested for domestic and agricultural purposes. Numbers of aquifer uncovered in the eastern and western region of Sabah with underlying sandstone and Quaternary Alluvium have significant potential for groundwater reservoirs. Aquifer along the coastal areas and islands around Sabah also gives sufficient potable water supplies. Minimal pollutant content was found in all water sources and acceptable under the National Water Standard of Malaysia, except for contaminants coming from septic tanks and agricultural activities. A decentralized water system is more beneficial for Sabah’s rural areas. Smaller scaled plants are flexible to collect from any water sources and treat at the point of use. Expenditure is significantly decreased by a shorter distribution network and lower installation and maintenance cost. Nonetheless, the treatment utilized may be limited to a simpler process as semiskilled or un-skilled personnel will be required to operate and maintain the system.

KEYWORDS: Groundwater, Malaysia, rainwater, rural area, surface water, water supply

REFERENCE

  • Abd Razak, Y. and Abd Karim, M. H. (2009) “Groundwater in the Malaysian Context” in Groundwater Colloquium 2009, Groundwater Management in Malaysia -Status and Challenges. Putrajaya, Malaysia, Academy of Sciences Malaysia (ASM), 1 –14.
  • Abdullah, M. H. and Musta, B. (1999) Phreatic Water Quality of the Turtle Islands of East Malaysia: Pulau Selingaan and Pulau Bakkugan Kechil. Borneo Science, 6, 1–9.
  • Abdullah, M. H., Musta, B., and Md. Tan, M. (1997) A Preliminary Geochemical Study on Manukan Island, Sabah. Borneo Science, 3, 43–51.
  • Van Afferden, M., Cardona, J. A., Müller, R. A., Lee, M. Y., and Subah, A. (2015) A new approach to implementing decentralized wastewater treatment concepts. Water Science and Technology, 72(11), 1923–1930.
  • Ahmed, W., Gardner, T., and Toze, S. (2011) Microbiological Quality of Roof-Harvested Rainwater and Health Risks: A Review. Journal of Environment Quality, 40(1), 13. [online] https://www.agronomy.org/publications/jeq/abstracts/40/1/13.
  • Alahmr, F. O. M., Othman, M., Abd Wahid, N. B., Halim, A. A., and Latif, M. T. (2012) Compositions of dust fall around semi-Urban Areas in Malaysia. Aerosol and Air Quality Research, 12(4), 629–642.
  • Almeida, C. and Soares, F. (2012) Microbiological monitoring of bivalves from the Ria Formosa Lagoon (south coast of Portugal): A 20years of sanitary survey. Marine Pollution Bulletin,
    64(2), 252–262. [online] http://dx.doi.org/10.1016/j.marpolbul.2011.11.025.
  • Ani, A. I. . (2009) Rainwater harvesting system evaluation: A resident experience in Sabah, Malaysia. International Symposium in Developing Economies: Commonalities Among Diversities, 26– 39.
  • Appan, A. (1997) Roof water collection systems in some Southeast Asian countries: Status and water quality levels. Journal of the Royal Society of Health, 117(5), 319–323. [online] http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed4&NEWS=N&AN= 1998050802.
  • Ariffin, M. and Sulaiman, S. N. M. (2015) Regulating Sewage Pollution of Malaysian Rivers and its Challenges. Procedia Environmental Sciences, 30, 168–173. [online] http://linkinghub.elsevier.com/retrieve/pii/S1878029615006246.
  • Aris, A. Z., Abdullah, M. H., and Kim, K. (2007) Hydrogeochemistry of Groundwater in Manukan Island, Sabah. The Malaysian Journal of Analytical Sciences, 11(2), 407–413.
  • Aris, A. Z., Lim, W. Y., Praveena, S. M., Yusoff, M. K., Ramli, M. F., and Juahir, H. (2014) Water Quality Status of Selected Rivers in Kota Marudu , Sabah , Malaysia and its Suitability for Usage. Sains Malaysiana, 43(3), 377–388.
  • Asano, T., Burton, F. L., Leverenz, H. L., Tsuchihashi, R., and Tchobanoglous, G. (2007) Water Reuseissues, Technologies and Applications, New York, USA, McGraw Hill.
  • ASM (2011) Sustaining Malaysia ’ s Future: Mega Science Framework Study Water Sector - Final Report,
  • Atta, M., Yaacob, W. Z. W., and Jaafar, O. Bin (2015) The potential impact of leachate-contaminated groundwater of an ex-landfill site at Taman Beringin Kuala Lumpur, Malaysia. Environmental Earth Sciences, 73(7), 3913–3923. [online] http://link.springer.com/10.1007/s12665-014-3675-x.
  • Ayob, S. and Rahmat, S. N. (2017) Rainwater Harvesting ( RWH ) and Groundwater Potential as Alternatives Water Resources in Malaysia : A Review. MATEC Web Conference,
    04020(103).
  • Ayog, J., Ayog, J. L., Dullah, S., and Ramli, R. (2016) Harvested Rainwater Quality Assessment on the Effects of Roof Materials to the First Flush Runoff. Transactions on Science and Technology, 271 –276.
  • Barde, J. A. (2017) What Determines Access to Piped Water in Rural Areas? Evidence from SmallScale Supply Systems in Rural Brazil. World Development, 95, 88–110. [online] http://dx.doi.org/10.1016/j.worlddev.2017.02.012. van den Berg, C. (2015) Drivers of non-revenue water: A cross-national analysis. Utilities Policy, 36, 71–78. [online] http://dx.doi.org/10.1016/j.jup.2015.07.005.
  • Burford, M. A., Revill, A. T., Smith, J., and Clementson, L. (2012) Effect of sewage nutrients on algal production, biomass and pigments in tropical tidal creeks. Marine Pollution Bulletin, 64(12), 2671–2680. [online] http://dx.doi.org/10.1016/j.marpolbul.2012.10.008.
  • Chan, N. W. (2006) A comparative study of water resources usage by households in GeorgetownMalaysia and Pattaya-Thailand. Iranian Journal of Environmental Health Science & Engineering, 3(4), 223–228. [online] http://journals.tums.ac.ir/abs/3377.
  • Che-Ani, A. I., Shaari, N., Sairi, A., Zain, M. F. M., and Tahir, M. M. (2009) Rainwater harvesting as an alternative water supply in the future. European Journal of Scientific Research, 34(1), 132– 140. [online] http://www.scopus.com/inward/record.url?eid=2-s2.0- 68849093029&partnerID=tZOtx3y1.
  • Chen, F. and Yao, Q. (2014) The Development of Rural Domestic Wastewater Treatment in China. Advanced Materials Research, 10731076, 829–832.
  • Chen, Z., Ngo, H. H., and Guo, W. (2013) A Critical Review on the End Uses of Recycled Water. Critical Reviews in Environmental Science and Technology, 43(14), 1446–1516. [online] https://doi.org/10.1080/10643389.2011.647788.
  • Chen, Z., Wu, Q., Wu, G., and Hu, H. Y. (2017) Centralized water reuse system with multiple applications in urban areas: Lessons from China’s experience. Resources, Conservation and Recycling, 117, 125–136. [online] http://dx.doi.org/10.1016/j.resconrec.2016.11.008.
  • Chu, L. H. (2004) Groundwater Utilization and Management in Malaysia. Thematic Session on Geoenvironment of Delta and Groundwater Management in East and Southeast Asia, CCOP Annual Session, 83–93. [online] http://www.ccop.or.th/download/pub/41as_ii.pdf.
  • Cleophas, F. N., Isidore, F., Han, L. K., and Bidin, K. (201 3) Water quality status of Liwagu River , Tambunan , Sabah , Malaysia. Journal of Tropical Biology and Conservation, 10, 67–73.
  • Cravo, A., Fernandes, D., Dami??o, T., Pereira, C., and Reis, M. P. (2015) Determining the footprint of sewage discharges in a coastal lagoon in South-Western Europe. Marine Pollution Bulletin,
    96(1–2), 197–209. [online] http://dx.doi.org/10.1016/j.marpolbul.2015.05.029.
  • Crites, R. W. and Tchobanoglous, G. (1998) Small and decentralized wastewater management systems, New York, McGraw-Hill. Davis, M. L. and Cornwell, D. A. (2013) Introduction to Environmental Engineering, Singapore, Mc Graw Hill.
  • Despins, C., Farahbakhsh, K., and Leidl, C. (2009) Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. Journal of Water Supply: Research and Technology AQUA, 58(2), 117–134. DHI (2011) Non-Revenue Water: Custom solutions for water utilities to reduce leakage and optimise pipe networ management. DHI Solution. DID (2009) Rainwater Harvesting: Guidebook on Planning and Design, Drainage, Malaysian Department of Irrigation and Drainage.
  • Distefano, T. and Kelly, S. (2017) Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130–147. [online] http://dx.doi.org/10.1016/j.ecolecon.2017.06.019.
  • Elango, L. and Kannan, R. (2007) Rock-water interaction and its control on chemical composition of groundwater. Concepts and Applications in Environmental Geochemistry, 5(07), 229–246. [online] http://www.sciencedirect.com/science/article/pii/S1474817707050115 (Accessed November 28, 2017).
  • Engin, G. O. and Demir, I. (2006) Cost analysis of alternative methods for wastewater handling in small communities. Journal of Environmental Management, 79(4), 357–363.
  • Fahnline, E. (2013) The production and remediation of malaysia’s groundwater resources. Ensearch Sustainability and Environmental Management Conf. and Exhibition, 1 –52.
  • Faisal, M., Omang, S. A. K., and Tahir, S. (1994) Geology of Kota Kinabalu and its implications to groundwater potential. Geololy Society Malaysia, Bulletin, 38, 11–20.
  • Falco, G. J. and Webb, W. R. (2015) Water Microgrids: The Future of Water Infrastructure Resilience. Procedia Engineering, 118, 50–57.
  • Giri, R. R., Takeuchi, J., and Ozaki, H. (2006) Biodegradation of domestic wastewater under the simulated conditions of Thailand. Water and Environment Journal, 20(3), 169–176.
  • Harun, S., Dambul, R., Abdullah, M. H., and Mohamed, M. (2014) Spatial and seasonal variations in surface water quality of the Lower Kinabatangan River Catchment , Sabah , Malaysia. Journal of Tropical Biology and Conservation, 11, 117–131.
  • Harun, S. and Fikri, A. H. (2016) Report on Water Quality Monitoring in Sugut River and its Tributaries, Kota Kinabalu, Sabah.
  • Hasan, H. H., Jamil, N. R., and Aini, N. (2015) Water Quality Index and Sediment Loading Analysis in Pelus River, Perak, Malaysia. Procedia Environmental Sciences, 30, 133–138. [online] http://linkinghub.elsevier.com/retrieve/pii/S1878029615006180.
  • Heng, L. Y., Chukong, L. N., Stuebing, R. B., and Omar, M. (2006) The Water Quality of Several Oxbow Lakes in Sabah, Malaysia and its Relation to Fish Fauna Distribution. Journal of Biological Sciences, 2(6), 365–369.
  • Higuerey, A., Trujillo, L., and González, M. M. (2017) Has efficiency improved after the decentralization in the water industry in Venezuela? Utilities Policy, 49, 127–136.
  • Hing, T. T. (1994) Hydrochemistry of groundwater at Sahabat region, Sabah. Newsletter of the Geological Society of Malaysia., 20(3), 229–230.
  • Hussein, M., Yoneda, K., Othman, N., Mohd Zaki, Z., and Mohd Yusof, M. H. (2017) Effects of Number of Connections and Pipe Length To the Water Losses in Melaka. Jurnal Teknologi, 79(3), 45–59. [online] http://www.jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/9874.
  • Huston, R., Chan, Y. C., Chapman, H., Gardner, T., and Shaw, G. (2012) Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Research, 46(4), 1121 –1132. [online] http://dx.doi.org/10.1016/j.watres.2011.12.008.
  • Isa, N. M., Aris, A. Z., Lim, W. Y., Sulaiman, W. N. A. W., and Praveena, S. M. (2014) Evaluation of heavy metal contamination in groundwater samples from Kapas Island, Terengganu, Malaysia. Arabian Journal of Geosciences, 7(3), 1087–1100. Ismail, W. M. Z. W. (2009) “Groundwater for Domestic Needs in Kelantan” in Groundwater Colloquium 2009, Groundwater Management in Malaysia -Status and Challenges., 149–156.
  • Jasin, B. and Tating, F. F. (1991) Late Eocene planktonic Foraminifera from the Crocker Formation, Pun Batu, Sabah. Warta Geologi, 17(4), 187–191. JBA (2014) Jabatan Bekalan Air (JBA) – Empangan Air Negeri Johor. Sabah Water Dam. [online] http://www.jba.gov.my/index.php/en/empangan-air-negeri-sabah (Accessed January 19, 2018).
  • Jeong, H., Broesicke, O. A., Drew, B., and Crittenden, J. C. (2018) Life cycle assessment of smallscale greywater reclamation systems combined with conventional centralized water systems for the City of Atlanta, Georgia. Journal of Cleaner Production, 174, 333–342. [online] http://linkinghub.elsevier.com/retrieve/pii/S0959652617325015.
  • Kadhum, S. A., Ishak, M. Y., Zulkifli, S. Z., and Hashim, R. binti (2015) Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Marine Pollution Bulletin, 101(1), 391 –396.
  • Kasmin, H., Bakar, N. H., and Zubir, M. M. (2016) Monitoring on The Quality and Quantity of DIY Rainwater Harvesting System. IOP Conference Series: Materials Science and Engineering, 136, 1 –8. [online] http://stacks.iop.org/1757 – 899X/136/i=1/a=012067?key=crossref.fff6394d3e607d908e96ee0ecfd1f8f3.
  • Kelly, E., Lee, K., Shields, K. F., Cronk, R., Behnke, N., Klug, T., and Bartram, J. (2017) The role of social capital and sense of ownership in rural community-managed water systems: Qualitative evidence from Ghana, Kenya, and Zambia. Journal of Rural Studies, 56, 156–166. [online] https://doi.org/10.1016/j.jrurstud.2017.08.021.
  • Krishna, J. (2005) The Texas Manual on Rainwater Harvesting, Austin, Texas. [online] http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+Texas+Manual+on+ Rainwater+Harvesting#0.
  • Kura, N. U., Ramli, M. F., Sulaiman, W. N. A., Ibrahim, S., and Aris, A. Z. (2015) An overview of groundwater chemistry studies in Malaysia. Environmental Science and Pollution Research, 1–19. [online] http://dx.doi.org/10.1007/s11356-015-5957-6.
  • Lee, C. (2011) Privatization, water access and affordability: Evidence from Malaysian household expenditure data. Economic Modelling, 28(5), 2121 –2128. [online] http://dx.doi.org/10.1016/j.econmod.2011.05.003.
  • Lee, J. Y., Yang, J. S., Han, M., and Choi, J. (2010) Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources. Science of the Total Environment, 408(4), 896–905. [online] http://dx.doi.org/10.1016/j.scitotenv.2009.11.001.
  • Lee, K. E., Mokhtar, M., Mohd Hanafiah, M., Abdul Halim, A., and Badusah, J. (2016) Rainwater harvesting as an alternative water resource in Malaysia: potential, policies and development. Journal of Cleaner Production, 126, 218–222.
  • Leong, J. Y. C., Oh, K. S., Poh, P. E., and Chong, M. N. (2017) Prospects of hybrid rainwatergreywater decentralised system for water recycling and reuse: A review. Journal of Cleaner Production, 142, 3014–3027.
  • Liang, X. and van Dijk, M. P. (2010) Financial and economic feasibility of decentralized wastewater reuse systems in Beijing. Water science and technology : a journal of the International Association on Water Pollution Research, 61(8), 1965–1973.
  • Liew, W. L., Kassim, M. A., Muda, K., Loh, S. K., and Affam, A. C. (2014) Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review. Journal of Environmental Management, 149, 222–235. [online] http://dx.doi.org/10.1016/j.jenvman.2014.10.016.
  • Lin, C. Y., Abdullah, M. H., Aris, A. Z., and Praveena, S. M. (2009) A Baseline Study on Groundwater Quality of the A Baseline Study on Groundwater Quality of the Tourist Island , Pulau. Modern Applied Science, 3(5), 62–74.
  • Liu, J., Liu, Q., and Yang, H. (2016) Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecological Indicators,
    60, 434–441. [online] http://dx.doi.org/10.1016/j.ecolind.2015.07.019.
  • Loo, Y. Y., Billa, L., and Singh, A. (2015) Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6(6), 817–823. [online] http://linkinghub.elsevier.com/retrieve/pii/S167498711400036X (Accessed August 29, 2017). Malaysian Meteorological Department (2017) Malaysian Climate. MET Malaysia, 1 –2. [online] http://www.met.gov.my/in/web/metmalaysia/climate/generalinformation/malaysia?p_p_id= 56_INSTANCE_zMn7KdXJhAGe&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view &p_p_col_id=column- 1&p_p_col_pos=1&p_p_col_count=2&_56_INSTANCE_zMn7KdXJhAGe_page=1 (Accessed September 5, 2017).
  • Man, S. (2015) Sistem penuaian air hujan : Kajian kes kesediaan masyarakat di Rainwater harvesting : A case study of public readiness in Bandar. , 11(11), 53–62. Manap, M. A., Sulaiman, W. N. A., Ramli, M. F., Pradhan, B., and Surip, N. (2013) A knowledge driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arabian Journal of Geosciences, 6(5), 1621 –1637.
  • Mara, G. (2004) Domestic Wastewater Treatment in Developing Countries, New York, Earthscan. Ministry of Finance Malaysia (2017) Malaysian Budget Report, Kuala Lumpur, Malaysia.
  • MMOH, M. M. of H. (2010) Drinking Water Quality Surveillance Programme – Ministry of Health. [online] http://kmam.moh.gov.my/public- user/drinking-water-quality-standard.html. National Water Services Commission (2016) Non Revenue Water (NRW), [online] http://www.span.gov.my/index.php/en/statistic/water-statistic/non-revenue-water- nrw-2016.
  • Nicholson, N., Clark, S. E., Long, B. V, Spicher, J., and Steele, K. a (2009) “Rainwater Harvesting for Non-Potable Use in Gardens: A Comparison of Runoff Water Quality from Green vs. Traditional Roofs” in World Environmental and Water Resources Congress 2009.
  • Reston, VA, American Society of Civil Engineers, 1 –10. [online] http://ascelibrary.org/doi/10.1061/41036%28342%29146. NRO (1994) Natural Resources Office Sabah: Water Resources Master Plan, Final Report Overview,
  • Nyemba, A., Manzungu, E., Masango, S., and Musasiwa, S. (2010) The impact of water scarcity on environmental health in selected residential areas in Bulawayo City, Zimbabwe. Physics and Chemistry of the Earth, 35(13–14), 823–827. [online] http://dx.doi.org/10.1016/j.pce.2010.07.028.
  • Padfield, R., Tham, M. H., Costes, S., and Smith, L. (2016) Uneven development and the commercialisation of public utilities: A political ecology analysis of water reforms in Malaysia. Utilities Policy, 40, 152–161.
  • Piratla, K. R. and Goverdhanam, S. (2015) Decentralized Water Systems for Sustainable and Reliable Supply. Procedia Engineering, 118, 720–726.
  • Praveena, S. M., Lin, C. Y., Aris, A. Z., and Abdullah, M. H. (2010) Groundwater Assessment at Manukan Island, Sabah: Multidisplinary Approaches. Natural Resources Research, 19(4), 279–291. [online] http://dx.doi.org/10.1007/s11053-010-9124-y.
  • Rahmat, S. N. B., Ali, Z. M., and Musa, S. (2008) “Treatment of Rainwater Quality Using Sand Filter” in International Conference on Environment 2008 (ICENV 2008)., 1 –8. Rijsberman, F. R. (2006) Water scarcity: Fact or fiction? Agricultural Water Management, 80, 5–22.
  • Saimy, I. S. and Yusof, N. A. M. (2013) The Need for Better Water Policy and Governance in Malaysia. Procedia – Social and Behavioral Sciences, 81, 371 –375. [online] http://linkinghub.elsevier.com/retrieve/pii/S1877042813015127. Saleh, H. and Samsudin, A. R. (2013) Geo-Electrical Resistivity Characterization of Sedimentary Rocks in Dent Peninsular, Lahad Datu, Sabah. Borneo science, 32, 33–43.
  • Salleh, H. M. and Malek, N. A. (2012) Non-Revenue Water, Impact To The Services, Environment And Financial, [online] http://www.kettha.gov.my/kettha/portal/document/files/Pdf Innovasi Kettha/NRW Impact To The Service,Environment And Financial.pdf.
  • Sánchez, A. S., Cohim, E., and Kalid, R. A. (2015) A review on physicochemical and microbiological contamination of roof-harvested rainwater in urban areas. Sustainability of Water Quality and Ecology, 6, 119–137.
  • Sapkota, M., Arora, M., Malano, H., Moglia, M., Sharma, A., George, B., and Pamminger, F. (2015) An overview of hybrid water supply systems in the context of urban water management: Challenges and opportunities. Water (Switzerland), 7(1), 153–174. [online] https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84920875758&doi=10.3390%2Fw7010153&partnerID=40&md5=3d410c20acf9e654bcdcc bc19ef66cbc.
  • Sefie, A., Aris, A. Z., Shamsuddin, M. K. N., Tawnie, I., Suratman, S., Idris, A. N., Saadudin, S. B., and Wan Ahmad, W. K. (2015) Hydrogeochemistry of Groundwater from Different Aquifer in Lower Kelantan Basin, Kelantan, Malaysia. Procedia Environmental Sciences, 30, 151– 156. [online] http://www.sciencedirect.com/science/article/pii/S1 878029615006210.
  • Shaheed, R., Wan Mohtar, W. H. M., and El-Shafie, A. (2017) Ensuring water security by utilizing roof-harvested rainwater and lake water treated with a low-cost integrated adsorptionfiltration system. Water Science and Engineering, 10(2), 115–124. [online] http://dx.doi.org/10.1016/j.wse.2017.05.002.
  • Shirazi, S. M., Adham, M. I., Zardari, N. H., Ismail, Z., Imran, H. M. D., and Mangrio, M. A. (2015) Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia. Journal of Water and Land Development, 24(1–3), 11–19.
  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., and Kouimtzis, T. (2003) Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124. [online] http://www.sciencedirect.com/science/article/pii/S0043135403003981#BIB1 (Accessed September 19, 2017).
  • Sitzenfrei, R. and Rauch, W. (2014) Investigating transitions of centralized water infrastructure to decentralized solutions – An integrated approach. Procedia Engineering, 70, 1549–1557. [online] http://dx.doi.org/10.1016/j.proeng.2014.02.171. Suratman, S. (2004) 6.6. IWRM: Managing the Groundwater Component in Malaysia. Malaysia Water Forum, Kuala Lumpur, Malaysia, 19–22. [online] http://scholar.google.ca/scholar?start=100&q=iwrm&hl=en&as_sdt=1,5#22.
  • Suratman, S., Tawnie, I., and Sefei, A. (2011) Impact of landfills on groundwater in Selangor, Malaysia. ASM Science Journal, 5(2), 101 –108. Tan, J. (2012) The Pitfalls of Water Privatization: Failure and Reform in Malaysia. World Development, 40(12), 2552–2563. [online] http://dx.doi.org/10.1016/j.worlddev.2012.05.012.
  • Tankiewicz, M., Fenik, J., and Biziuk, M. (2010) Determination of organophosphorus and organonitrogen pesticides in water samples. TrAC – Trends in Analytical Chemistry, 29(9), 1050–1063. [online] http://dx.doi.org/10.1016/j.trac.2010.05.008.
  • Tarbuck, E. J. and Lutgens, F. K. (2015) Earth Science, England, Pearson.
  • Tubau, I., Vázquez-Suñé, E., Carrera, J., Valhondo, C., and Criollo, R. (2017) Quantification of groundwater recharge in urban environments. Science of The Total Environment, 592, 391– 402.
  • [online] http://linkinghub.elsevier.com/retrieve/pii/S0048969717306307 (Accessed September 13, 2017).
  • UNICEF and WHO (2017) Progress on Drinking Water, Sanitation and Hygiene, [online] http://apps.who.int/iris/bitstream/10665/258617/1/9789241512893 – eng.pdf%0Ahttp://www.wipo.int/amc/en/%0Ahttp://www.wipo.int/amc/en/.
  • Wang, J., Li, Y., Huang, J., Yan, T., and Sun, T. (2016) Growing water scarcity, food security and government responses in China. Global Food Security, 14, 1–9. [online] http://dx.doi.org/10.1016/j.gfs.2017.01.003.
  • Weber, B., Cornel, P., and Wagner, M. (2007) Semi-centralised supply and treatment systems for (fast growing) urban areas. Water Science and Technology, 55(1–2), 349–356. [online] http://wst.iwaponline.com/content/55/1 -2/349.abstract. WHO and UNICEF (2014) Progress on sanitation and drinking-water – 2014 update. Monitoring Programme for water supply and sanitation, 1 –78. [online] http://books.google.com/books?hl=en&lr=&id=irXCej15ax8C&oi=fnd&pg=PA56&dq=Dri nking+Water+and+Sanitation&ots=nB6oNXONjK&sig=ccf20ooYvn9F1SWv_miDYvNkE As. Wilderer, P. A. and Schreff, D. (2000) Decentralized and centralized wastewater management: A challenge for technology developers. Water Science and Technology, 41(1), 1 –8.
  • Xiao, S., Hu, S., Zhang, Y., Zhao, X., and Pan, W. (2018) Influence of sewage treatment plant effluent discharge into multipurpose river on its water quality: A quantitative health risk assessment of Cryptosporidium and Giardia. Environmental Pollution, 233, 797–805. [online] http://linkinghub.elsevier.com/retrieve/pii/S0269749117326817.
  • Yan, X., Ward, S., Butler, D., and Daly, B. (2017) Performance assessment and life cycle analysis of potable water production from harvested rainwater by a decentralized system. Journal of Cleaner Production, 172, 2167–2173.
  • Yaser, A. Z. and Safie, N. N. (2020) Green Engineering for Campus Sustainability, Springer Singapore.
  • Yaziz, M. I., Gunting, H., Sapari, N., and Ghazali, A. W. (1989) Variation in Rainwater From Roof Ctachments. Water Research, 23(6), 761 –765.
  • Zeng, Z., Liu, J., and Savenije, H. H. G. (2013) A simple approach to assess water scarcity integrating water quantity and quality. Ecological Indicators, 34, 441–449. [online] http://dx.doi.org/10.1016/j.ecolind.2013.06.012.
  • Zhou, Q., Deng, X., and Wu, F. (2017) Impacts of water scarcity on socio-economic development: A case study of Gaotai County, China. Physics and Chemistry of the Earth, Parts A/B/C. [online] http://linkinghub.elsevier.com/retrieve/pii/S1474706516302285.
  • Zin, T., SabaiAung, T., Saupin, S., Myint, T., KhinSN, D., Soe Aung, M., and S, S. B. (2015) Influencing Factors for Cholera and Diarrhoea: Water Sanitation and Hygiene in Impoverished Rural Villages of Beluran District, Sabah Malaysia. Malaysian Journal of Public Health Medicine, 15(1), 30–40

 

Download Full Paper Here (Right-Click and Save As)